Suricata User Guide
Release 4.0.0-dev

OISF

Nov 12, 2017

Contents

What is Suricata 1
1.1 About the Open Information Security Foundation 1
Installation 3
2.1 SOUICE . o v v et e e e e e e e e e e e e e 3
2.2 Binary packageso . e e e e e e e e e e e e e e e e e 5
2.3 Advanced Installation L e e e e e e 5
Command Line Options 7
31 UnitTests . . o o v v o e e e e e e e e e e e e e e e e 9
Suricata Rules 11
4.1 RulesIntroduction e e e e e e e e 11
4.2 Meta-Settings i e e e e e e e e e e e e e e e e e 16
43 Header Keywords e e e e e 21
4.4 Prefilter e e e e e e e e e e e e e e 31
4.5 Payload Keywords e e e e e e e e 32
4.6 HTTP Keywords o i it e e e e e e e e e e e e e e e e e e 51
477 Flow Keywords o e e e e e e 72
4.8 Flowint o e e e e e e e e e e 75
4.9 XIS . . oL e e e e e 77
4.10 File Keywords e e e e 79
4.11 Rule Thresholding 0 e e e e e e e e e 81
412 DNSKeywords v v i e e e e e e e e e e e 83
4.13 SSL/TLS Keywords o o o i e e e e e e e e e e e e e 84
4.14 Modbus Keyword 87
4.15 DNP3 Keywords e e 89
4.16 ENIP/CIP Keywords o o v i i i e 92
4.17 Generic App Layer Keywords L e e e 92
418 LuaScripting o v o e e e e e e e e e e e e e e 93
4.19 Normalized Buffers e e e e e e 95
420 Differences From Snort e e e e e e e e e 96
Rule Management 107
5.1 Rule Management with Oinkmaster e 107
52 Adding YourOwnRules e 110
53 RuleReloads e 111

10

11

12

13

14

15

16

Making sense out of Alerts

Performance

7.1
7.2
7.3
7.4
7.5
7.6
1.7
7.8
7.9
7.10

Runmodes
Packet Capture e e e e e e e e e e
Tuning Considerations« v v v v i e e e e e e e e e e e e e e e e e e
Hyperscan e e e e e e e e
High Performance Configuration e
StatiStiCs o o e e e e
Ignoring Traffic o L e
Packet Profiling e e e e
Rule Profiling e e e
Temalloc o e e e e e

Configuration

8.1
8.2
8.3
8.4
8.5

Suricata.yaml L e e e e e e e e e e e e
Global-Thresholds o e e e e e
Snort.conf to Suricata.yaml L. e e e
Multi Tenancy o i e e e e e e e e
Dropping Privileges After Startup L e e e e

Reputation

9.1

IPReputation o e e e e e e

Init Scripts

Setting up IPS/inline for Linux

11.1

Iptables configuration e

Output

12.1
12.2
12.3
12.4
12.5
12.6

EVE & e
LuaOutput e e e e e
Syslog Alerting Compatibility L
Custom http log@ing L e e
Custom tls log@ing e e e e e e e e e e
LogRotation e e e e e

File Extraction

13.1
13.2
13.3
13.4
13.5

ATChitecture e e e e e e e e e e e e e e e e
SEtiNgS . . . o v v o e e e e e e e e e e e e e e e e e
OUtpuL . . . e e e e e e
Rules e e e e e e
MDD S . e e e

Public Data Sets

Using Capture Hardware

15.1
15.2
15.3

Endace DAG e
Napatech Suricata Installation Guide L e
MyYTIiCOM . . . o o o o o e e e e e

Interacting via Unix Socket

16.1
16.2
16.3
16.4

Introduction e e
Commands in standard running mode Lo
Commands onthe cmd prompt. L e e e e e e e e e e
Pcap processingmodeo e e e e e e e e

113

115
115
116
118
119
121
121
124
125
125
126

129
129
171
174
178
181

183
183

187

189
189

193
193
205
216
217
218
219

221
221
221
222
222
222

227

229
229
230
234

16.5

Build your own client

17 Man Pages

17.1

Suricata

18 Acknowledgements

19 Licenses

19.1
19.2
19.3
19.4

GNU General Public License it et e e e e e e e e e
Creative Commons Attribution-NonCommercial 4.0 International Public License
Suricata Source Code

Suricata Documentation

CHAPTER 1

What is Suricata

Suricata is a high performance Network IDS, IPS and Network Security Monitoring engine. It is open source and
owned by a community-run non-profit foundation, the Open Information Security Foundation (OISF). Suricata is
developed by the OISF.

1.1 About the Open Information Security Foundation

The Open Information Security Foundation is a non-profit foundation organized to build community and to support
open-source security technologies like Suricata, the world-class IDS/IPS engine.

1.1.1 License

The Suricata source code is licensed under version 2 of the GNU General Public License. This documentation is
licensed under the Creative Commons Attribution-NonCommercial 4.0 International Public License.

Suricata User Guide, Release 4.0.0-dev

2 Chapter 1. What is Suricata

CHAPTER 2

Installation

Before Suricata can be used it has to be installed. Suricata can be installed on various distributions using binary
packages: Binary packages.

For people familiar with compiling their own software, the Source method is recommended.

Advanced users can check the advanced guides, see Advanced Installation.

2.1 Source

Installing from the source distribution files gives the most control over the Suricata installation.

Basic steps:

tar xzvf suricata-4.0.0.tar.gz
cd suricata-4.0.0

./configure

make

make install

This will install Suricata into /usr/local/bin/, use the default configuration in /usr/local/etc/
suricata/ and will outputto /usr/local/var/log/suricata

2.1.1 Common configure options

——-disable—-gccmarch-native
Do not optimize the binary for the hardware it is built on. Add this flag if the binary is meant to be portable or
if Suricata is to be used in a VM.

——prefix=/usr/
Installs the Suricata binary into /usr/bin/. Default /usr/local/

—-sysconfdir=/etc
Installs the Suricata configuration files into /etc/suricata/. Default /usr/local/etc/

Suricata User Guide, Release 4.0.0-dev

——-localstatedir=/var
Setups Suricata for logging into /var/log/suricata/. Default /usr/local/var/log/suricata

——enable-lua
Enables Lua support for detection and output.

——enable—-geopip
Enables GeolP support for detection.

——enable-rust
Enables experimental Rust support

2.1.2 Dependencies

For Suricata’s compilation you’ll need the following libraries and their development headers installed:
libpcap, libpcre, libmagic, zlib, libyaml

The following tools are required:
make gce (or clang) pkg-config

For full features, also add:
libjansson, libnss, libgeoip, liblua5.1, libhiredis, libevent

Rust support (experimental):

rustc, cargo

Ubuntu/Debian

Minimal:

apt—-get install libpcre3 libpcre3-dbg libpcre3-dev build-essential libpcap-dev \
libyaml-0-2 libyaml-dev pkg-config zliblg zliblg-dev \
make libmagic-dev

Recommended:

apt-get install libpcre3 libpcre3-dbg libpcre3-dev build-essential libpcap-dev \
libnetl-dev libyaml-0-2 libyaml-dev pkg-config zliblg zliblg-dev \
libcap—ng-dev libcap-ng0 make libmagic-dev libjansson-dev \
libnss3-dev libgeoip-dev liblua5.l-dev libhiredis-dev libevent-dev

Extra for iptables/nftables IPS integration:

apt—-get install libnetfilter-queue-dev libnetfilter-queuel \
libnetfilter-log-dev libnetfilter-logl \
libnfnetlink-dev libnfnetlinkO

For Rust support (Ubuntu only):

apt-get install rustc cargo

4 Chapter 2. Installation

Suricata User Guide, Release 4.0.0-dev

2.2 Binary packages

2.2.1 Ubuntu

For Ubuntu, the OISF maintains a PPA suricata-stable that always contains the latest stable release.

To use it:

sudo add-apt-repository ppa:oisf/suricata-stable
sudo apt-get update
sudo apt-get install suricata

2.2.2 Debian

In Debian 9 (Stretch) do:

apt—-get install suricata

In Debian Jessie Suricata is out of date, but an updated version is in Debian Backports.

As root do:

echo "deb http://http.debian.net/debian Jjessie-backports main" > \
/etc/apt/sources.list.d/backports.list

apt—-get update

apt—-get install suricata -t Jjessie-backports

2.2.3 Fedora

dnf install suricata

2.2.4 RHEL/CentOS

For RedHat Enterprise Linux 7 and CentOS 7 the EPEL repository can be used.

yum install epel-release
yum install suricata

2.3 Advanced Installation

Various installation guides for installing from GIT and for other operating systems are maintained at: https://redmine.
openinfosecfoundation.org/projects/suricata/wiki/Suricata_Installation

2.2. Binary packages 5

https://redmine.openinfosecfoundation.org/projects/suricata/wiki/Suricata_Installation
https://redmine.openinfosecfoundation.org/projects/suricata/wiki/Suricata_Installation

Suricata User Guide, Release 4.0.0-dev

6 Chapter 2. Installation

CHAPTER 3

Command Line Options

Suricata’s command line options:

-h

Display a brief usage overview.
-V

Displays the version of Suricata.
—-c <path>

Path to configuration file.
=T

Test configuration.
-V

The -v option enables more verbosity of Suricata’s output. Supply multiple times for more verbosity.
-r <path>

Run in pcap offline mode reading files from pcap file.

-i <interface>
After the -i option you can enter the interface card you would like to use to sniff packets from. This option will
try to use the best capture method available.

——pcap [=<device>]
Run in PCAP mode. If no device is provided the interfaces provided in the pcap section of the configuration file
will be used.

——af-packet [=<device>]
Enable capture of packet using AF_PACKET on Linux. If no device is supplied, the list of devices from the
af-packet section in the yaml is used.

-q <queue id>
Run inline of the NFQUEUE queue ID provided. May be provided multiple times.

-s <filename.rules>
With the -s option you can set a file with signatures, which will be loaded together with the rules set in the yaml.

Suricata User Guide, Release 4.0.0-dev

-S <filename.rules>
With the -S option you can set a file with signatures, which will be loaded exclusively, regardless of the rules set
in the yaml.

-1 <directory>
With the -1 option you can set the default log directory. If you already have the default-log-dir set in yaml, it
will not be used by Suricata if you use the -1 option. It will use the log dir that is set with the -1 option. If you do
not set a directory with the -1 option, Suricata will use the directory that is set in yaml.

Normally if you run Suricata on your console, it keeps your console occupied. You can not use it for other
purposes, and when you close the window, Suricata stops running. If you run Suricata as deamon (using the -D
option), it runs at the background and you will be able to use the console for other tasks without disturbing the
engine running.

——runmode <runmode>
With the —runmode option you can set the runmode that you would like to use. This command line option can
override the yaml runmode option.

Runmodes are: workers, autofp and single.
For more information about runmodes see Runmodes in the user guide.

—-F <bpf filter file>
Use BPF filter from file.

-k [all|none]
Force (all) the checksum check or disable (none) all checksum checks.

—--user=<user>
Set the process user after initialization. Overrides the user provided in the run-as section of the configuration
file.

——group=<group>
Set the process group to group after initialization. Overrides the group provided in the run-as section of the
configuration file.

——pidfile <file>
Write the process ID to file. Overrides the pid-file option in the configuration file and forces the file to be written
when not running as a daemon.

——init-errors-fatal
Exit with a failure when errors are encountered loading signatures.

——disable—-detection
Disable the detection engine.

——dump-config

Dump the configuration loaded from the configuration file to the terminal and exit.
—-build-info

Display the build information the Suricata was built with.
—-list-app-layer—-protos

List all supported application layer protocols.

——list-keywords=[all|csv|<kword>]
List all supported rule keywords.

—-list-runmodes
List all supported run modes.

8 Chapter 3. Command Line Options

Suricata User Guide, Release 4.0.0-dev

——set <key>=<value>
Set a configuration value. Useful for overriding basic configuration parameters in the configuration. For exam-
ple, to change the default log directory:

——set default-log-dir=/var/tmp

—-engine—analysis
Print reports on analysis of different sections in the engine and exit. Please have a look at the conf parameter
engine-analysis on what reports can be printed

——unix-socket=<file>
Use file as the Suricata unix control socket. Overrides the filename provided in the unix-command section of the
configuration file.

—-pcap-buffer-size=<size>
Set the size of the PCAP buffer (0 - 2147483647).

——-netmap [=<device>]
Enable capture of packet using NETMAP on FreeBSD or Linux. If no device is supplied, the list of devices
from the netmap section in the yaml is used.

——pfring[=<device>]
Enable PF_RING packet capture. If no device provided, the devices in the Suricata configuration will be used.

—-pfring-cluster-id <id>
Set the PF_RING cluster ID.

——pfring-cluster-type <type>
Set the PF_RING cluster type (cluster_round_robin, cluster_flow).

-d <divert-port>
Run inline using IPFW divert mode.

——dag <device>
Enable packet capture off a DAG card. If capturing off a specific stream the stream can be select using a device
name like “dag0:4”. This option may be provided multiple times read off multiple devices and/or streams.

—--napatech
Enable packet capture using the Napatech Streams API.

——mpipe
Enable packet capture using the TileGX mpipe interface.

——erf-in=<file>
Run in offline mode reading the specific ERF file (Endace extensible record format).

——simulate-ips
Simulate IPS mode when running in a non-IPS mode.

3.1 Unit Tests

Builtin unittests are only available if Suricata has been built with —enable-unittests.
Running unittests does not take a configuration file. Use -1 to supply an output directory.

-u
Run the unit tests and exit. Requires that Suricata be compiled with —enable-unittests.

3.1. Unit Tests 9

Suricata User Guide, Release 4.0.0-dev

-U, ——unittest-filter=REGEX
With the -U option you can select which of the unit tests you want to run. This option uses REGEX. Example
of use: suricata -u -U http

——list-unittests
List all unit tests.

——fatal-unittests
Enables fatal failure on a unit test error. Suricata will exit instead of continuuing more tests.

——unittests—-coverage
Display unit test coverage report.

10 Chapter 3. Command Line Options

CHAPTER 4

Suricata Rules

4.1 Rules Introduction

Contents

e Rules Introduction

Action

Protocol

Source and destination

Ports (source-and destination-port)

Direction

Rule options

Signatures play a very important role in Suricata. In most occasions people are using existing rulesets. The most
used are Emerging Threats, Emerging Threats Pro and Sourcefire’s VRT. A way to install rules is described in Rule
Management with Oinkmaster. This Suricata Rules document explains all about signatures; how to read-, adjust-and
create them.

A rule/signature consists of the following:
The action, header and rule-options.

Example of a signature:

11

http://www.emergingthreats.net/
http://www.emergingthreatspro.com/
http://www.snort.org/vrt/

Suricata User Guide, Release 4.0.0-dev

drop tcp EHOME_NET any -= $EXTERNAL_MET any (msg"ET
TROJAN Likely Bot

Mick in IRC (USA +..)"; flowestablished,to_server;
flowhbits:isselis_proto_ire; content:"NICK *; pore:"INICK
SUSAFO-91E.YT, classtype:rojan-activity;
reference:url,doc.emergingthreats.net/2008124;

reference:url www.emergingthreats. net'egi-

hin/cvsweb.cgifsigsVIRUSTROJAN _IRC Bots;
sid:2008124; rev:2;)

- Action
- Header
- Rule options

4.1.1 Action

For more information read ‘Action Order’ see Action-order.

Example:

drop tcp BHOME_MET any -> SEXTERMNAL_MET any (msg:"ET
TROJAM Likely Bot

Mick in IRC (USA +.)"; flow:established to_server;
flowbits:isset,is_proto_irc; content"NICK "; pore:"{NICK
HUSAA[0-9](3. 10", classtype:trojan-activity;
reference;url,doc.emergingthreats. netf2008124;
reference:url,www.emergingthreats. net/cgi-

binfevsweb. cgifsigsVIRUSTROJAN _IRC_Bots;

sid:2008124; rev:2;)

In this example the red, bold-faced part is the action.

4.1.2 Protocol

This keyword in a signature tells Suricata which protocol it concerns. You can choose between four settings. tcp (for
tep-traffic), udp, icmp and ip. ip stands for ‘all’ or ‘any’. Suricata adds a few protocols : http, ftp, tls (this includes
ssl), smb and dns (from v2.0). These are the so-called application layer protocols or layer 7 protocols. If you have a
signature with for instance a http-protocol, Suricata makes sure the signature can only match if it concerns http-traffic.

Example:

12 Chapter 4. Suricata Rules

Suricata User Guide, Release 4.0.0-dev

drop tep SHOME_MET any -> BEXTERMAL_NET any (msg:"ET
TROJAN Likely Bot

MNick in IRC (USA+..)"; flow:established to_server;
flowhits:issetis_proto_ire; content"MICK " pore:"/NICK
AUSAG[0-9](3 11" classtype trojan-activity;
reference:url,doc.emergingthreats. net/2008124,

reference:url, www.emergingthreats.net'cgi-
binfcwsweb.cgifsigsNVIRUSTROJAN_IRC_Bots:

sid: 2008124, rev:2;)

In this example the red, bold-faced part is the protocol.

4.1.3 Source and destination

In source you can assign IP-addresses; IPv4 and IPv6 combined as well as separated. You can also set variables such
as HOME_NET. (For more information see Rule-vars. In the Yaml-file you can set [P-addresses for variables such as
EXTERNAL_NET and HOME_NET. These settings will be used when you use these variables in a rule. In source
and destination you can make use of signs like ! And [].

For example:

1 1.1.1.1 (Every IP address but 1.1.1.1)

'71.1.1.1, 1.1.1.2] (Every IP address but 1.1.1.1 and 1.1.1.2)
SHOME_NET (Your setting of HOME_NET in yaml)
[SEXTERNAL_NET, !S$HOME_NET] (EXTERNAL_NET and not HOME_NET)
[10.0.0.0/24, !10.0.0.5] (10.0.0.0/24 except for 10.0.0.5)

Pay attention to the following:

If your settings in Yaml are:

HOME_NET: any
EXTERNAL_NET: ! S$SHOME_NET

You can not write a signature using EXTERNAL_NET because it stands for ‘not any’. This is a invalid setting.

Example of source and destination in a signature:

drop tep SHOME_NET any -> SEXTERMAL_MET any (msg="ET
TROJAN Likely Bot

Mick in IRC (USA +.)" flow:established to_server;
flowhits:isset,is_proto_irc; content"NICK ™, pere/NICK
FUSAF[0-9K3 11, classtype:trojan-activity,

reference:url doc.emergingthreats. net/2008124;

reference;url, www.emergingthreats. net/cgi-
binfcvsweb.cgifsigs™IRUSTROJAN _IRC_Bots;

sid:2008124; rev:Z;)

The red, bold-faced part is the source.

4.1. Rules Introduction 13

Suricata User Guide, Release 4.0.0-dev

drop tep SHOME_MET any -= SEXTERNAL_NET any (msg:"ET
TROJAN Likely Bot

Mick in IRC (USA +.)" flow:established to_server;
flowhits:isset,is_proto_ire; content"MNICK "; pere:"/NICK
SUSAF0-9)3.H1"; classtype:trojan-activity;
reference:url,doc_emergingthreats. net2008124,
reference;url,www.emergingthreats. net/'cgi-
binfevsweb.cgifsigsVIRUSTROJAN _IRC Bots;

sid:2008124; rev:Z:)

The red, bold-faced part is the destination.

4.1.4 Ports (source-and destination-port)

Traffic comes in and goes out through ports. Different ports have different port-numbers. The HTTP-port for example
is 80 while 443 is the port for HTTPS and MSN makes use of port 1863. Commonly the Source port will be set
as ‘any’. This will be influenced by the protocol. The source port is designated at random by the operating system.

Sometimes it is possible to filter/screen on the source In setting ports you can make use of special signs as well, like
described above at ‘source’. Signs like:

! exception/negation

range
[] signs to make clear which parts belong together
, separation

Example:

[80, 81, 82] (port 80, 81 and 82)

[80: 82] (Range from 80 till 82)

[1024:] (From 1024 till the highest port-number)
180 (Every port but 80)

[80:100, !'99] (Range from 80 till 100 but 99 excluded)
[1:80,!'[2,4]]

Example of ports in a signature:

drop tcp BHOME_MNET any -= SEXTERMAL_MET any (msg:"ET
TROJAM Likely Bot

Mick in IRC (USA +.)", flowestablished, to_server,
flowhits:isset,is_proto_ing; content:"MICK. " pore"/MNICE
FUSATO-9H3 V" classtypetrojan-activity;

reference:url doc.emergingthreats.net/2008124,

reference:url www.emergingthreats. net/'cgi-
binfevsweb.cgisigsNVIRUS/TROJAN_IRC_Bots;

sid:2008124; rev:2;)

14 Chapter 4. Suricata Rules

Suricata User Guide, Release 4.0.0-dev

drop tcp SHOME_NET any -> $EXTERNAL NET any (msg:"ET
TROJAN Likely Bot

Mick in IRC (LUSA +..)7 flow:established.to_server;
flowhits:isset,is_proto_irc; content,"NICK ", pore"/NICK
FUSAF0-9)3.HT classtypetrojan-activity,

reference:url, doc.emergingthreats. net/2008124;
reference;url,www.emergingthreats. net/cgi-

binfcvsweb. cgifsigsVIRUS/ITROJAN _IRC_Bots;

sid:2008124; rev:2;)

In this example, the red, bold-faced part is the port.

4.1.5 Direction

The direction tells in which way the signature has to match. Nearly every signature has an arrow to the right. This
means that only packets with the same direction can match.

source —> destination
source <> destination (both directions)

Example:

alert tcp 1.2.3.4 1024 - > 5.6.7.8 80

Example 1 tcp-session

. -
client SErVEr
i
IP address: 1.2.3.4 IP address: 5.6.7.8
Port: 1024 Port: 80
e
— -
scIlP 1234 src P 5678
src port 1024 src port 80
dstIP 5678 dsilP 1234
dst port 80 dst port 1024

In this example there will only be a match if the signature has the same order/direction as the payload.

Example of direction in a signature:

4.1. Rules Introduction 15

Suricata User Guide, Release 4.0.0-dev

drop tcp $HOME_MNET any -= SEXTERMNAL_MNET any (msg:"ET
TRQJAN Likely Bot

Mick in IRC (USA +..}"; flow:established,to_server;
flowbitsiisset,is_proto_irc; content:"MICK. ", pore:/NICK
MUSAMD-9K3 1" classtype trojan-activity,

reference:url docemergingthreats net/2008124;

reference:;url www.emergingthreats.net/cgi-
binfevsweb.cgifsigsVIRUSTROJAN _IRC_Bots;

5id:2008124, rev:2:)

In this example the red, bold-faced part is the direction.

4.1.6 Rule options

Keywords have a set format:

name: settings;

Sometimes it is just the name of the setting followed by ; . Like nocase;
There are specific settings for:

* meta-information.

* headers

* payloads

e flows

Note: The characters ; and " have special meaning in the Suricata rule language and must be escaped when used in
a rule option value. For example:

msg:"Message with semicolon\;";

For more information about these settings, you can click on the following headlines:
* Meta-settings
* Payload Keywords
e HTTP Keywords
* DNS Keywords
e Flow Keywords

* [P Reputation Rules

4.2 Meta-settings

Meta-settings have no effect on Suricata’s inspection; they do have an effect on the way Suricata reports events.

16 Chapter 4. Suricata Rules

Suricata User Guide, Release 4.0.0-dev

4.2.1 msg (message)

The keyword msg gives more information about the signature and the possible alert. The first part shows the class of
the signature. It is a convention that part is written in uppercase characters.

The format of msg is:

msg: "some description";

Examples:

msg:"ATTACK-RESPONSES 403 Forbidden";
msg:"ET EXPLOIT SMB-DS DCERPC PnP bind attempt";

It is a convention that msg is always the first keyword of a signature.
Another example of msg in a signature:

In this example the red, bold-faced part is the msg.

Note: The following characters must be escaped inside the msg: ; \ "

4.2.2 Sid (signature id)

The keyword sid gives every signature its own id. This id is stated with a number.

The format of sid is:

sid:123;

Example of sid in a signature:

drop tcp FBHOME_NET any -> SEXTERMAL_MNET any (msg:"ET
TROJAN Likely Bot

Mick in IRC (USA+..)"; flow.established.to_server;
lowhits:isset,is_proto_ire; content"NICK ", peresNICK
SUSAMO-9K3 M1 classtypetrojan-activity:;

reference:url doc.emergingthreats.net/2008124,

reference:url, waw.emergingthreats. net/cgi-
bin/cwsweb.cgifsigsVIRUS/TROJAN_IRC_Bots;

sid:2008124; rev:2;)

In this example the red, bold-faced part is the sid.

4.2.3 Rev (Revision)

The sid keyword is almost every time accompanied by rev. Rev represents the version of the signature. If a signature
is modified, the number of rev will be incremented by the signature writers. The format of rev is:

rev:123;

It is a convention that sid comes before rev, and both are the last of all keywords.

Example of rev in a signature:

4.2. Meta-settings 17

Suricata User Guide, Release 4.0.0-dev

drop tcp SHOME_MET any -> SEXTERMAL_MET any (msg:"ET
TROJAN Likely Bot

Mick in IRC (USA +..)"; flow:established.to_server;
flowbits:isset,is_proto_irc; content"MICK ™, pcre"/MICK
FUSAF0-9K3 .11 classtype: rojan-activity;

reference:url, doc.emergingthreats.net’2008124;

reference;url, www.emergingthreats. net/'cgi-
binfevsweb.cgi/sigsIRUSTROJAN _IRC_ Bots;

sid:2008124; rev:2;)

In this example the red, bold-faced part is the rev.

4.2.4 Gid (group id)

The gid keyword can be used to give different groups of signatures another id value (like in sid). Suricata uses by
default gid 1. It is possible to modify this. It is not usual that it will be changed, and changing it has no technical
implications. You can only notice it in the alert.

Example of gid in a signature:

10/15/09-03:30:10.219671 [**] [1:2008124:2] ET TROJAN
Likely Bot Mick

in IRC (USA +..) [**] [Classification: A Network Trojan was
Detected)]

[Priority: 3] {TCP} 192.168.1.42:1028 -> 72.184.196.31.6667

This is an example from the fast.log. In the part [1:2008124:2], 1 is the gid (2008124 is the the sid and 2 the rev).

4.2.5 Classtype

The classtype keyword gives information about the classification of rules and alerts. It consists of a short name, a long
name and a priority. It can tell for example whether a rule is just informational or is about a hack etcetera. For each
classtype, the classification.config has a priority which will be used in the rule.

It is a convention that classtype comes before sid and rev and after the rest of the keywords.

Example classtype:

config classification: web-application-attack,Web Application Attack,1l
config classification: not-suspicious,Not Suspicious Traffic,3

18 Chapter 4. Suricata Rules

Suricata User Guide, Release 4.0.0-dev

not-suspicious not-suspicious, Not Not Suspicious
Suspicious Traffic, Traffic
priority:3

In this example you see how classtype appears in signatures, the classification.config and the alert.

Another example of classtype in a signature:

drop tep SHOME_NET any -= SEXTERMNAL_NET any (msg."ET
TROJAN Likely Bot

Mick in IRC (USA +.}"; flowestablished to_server;
flowhits:isset,is_proto_irc; content"NICK "; pere"/NICK
FUSAF0-9){3. 11" classtype:trojan-activity;

reference:url, doc.emargingthreats.net/2008124;

reference;url, weow.emergingthreats. net'cgi-
binfevsweb.cgifsigsVIRUS/TROJAN _IRC_Bots;

sid:2008124; rev:2;)

In this example the red, bold-faced part is the classtype.

4.2.6 Reference

The reference keywords direct to places where information about the signature and about the problem the signature
tries to address, can be found. The reference keyword can appear multiple times in a signature. This keyword is meant
for signature-writers and analysts who investigate why a signature has matched. It has the following format:

reference: url, www.info.nl

In this example url is the type of reference. After that comes the actual reference (notice here you can not use http
before the url).

There are different types of references:

type:

system URL Prefix

bugtrag http://www.securityfocus.com/bid

cve http://cve.mitre.org/cgi-bin/cvename.cgi?name=

nessus http://cgi.nessus.org/plugins/dump.php3?id=

arachnids (No longer available but you might still encounter this in_
—signatures.)

4.2. Meta-settings 19

Suricata User Guide, Release 4.0.0-dev

http://www.whitehats.com/info/IDS
mcafee http://vil.nai.com/vil/dispVirus.asp?virus_k=
url http://

For example bugtraq will be replaced by the full url:

reference: bugtraq, 123; http://www.securityfocus.com/bid

Example of reference in a signature:

drop tcp 3HOME_MET any -= SEXTERMNAL MET any (msg:"ET
TROJAM Likely Bot

Mick in IRC (USA +)" flowestablished to_server;
flowbits:isset.is_proto_irc; content"MICK "; pcre/NICK
MUSAC0-9]{3.HT, classtypetrojan-activity;

reference:url doc.emergingthreats. net/2008124;
reference:url,www.emergingthreats.netlcgi-
binfcysweb.cgilsigs/VIRUSITROJAN IRC Bots;
Sid:2003124; rev:2;)

In this example the red, bold-faced part is the action.

4.2.7 Priority

The priority keyword comes with a mandatory numeric value which can range from 1 till 255. The numbers 1 to 4
are most often used. Signatures with a higher priority will be examined first. The highest priority is 1. Normally
signatures have already a priority through class type. This can be overruled with the keyword priority. The format of
priority is:

priority:1;

4.2.8 Metadata

Suricata ignores the words behind meta data. Suricata supports this keyword because it is part of the signature lan-
guage. The format is:

4.2.9 Target

The target keyword allows the rules writer to specify which side of the alert is the target of the attack. If specified, the
alert event is enhanced to contain information about source and target.

The format is:

target: [src_ipl|dest_ip]

If the value is src_ip then the source IP in the generated event (src_ip field in JSON) is the target of the attack. If target
is set to dest_ip then the target is the destination IP in the generated event.

20 Chapter 4. Suricata Rules

Suricata User Guide, Release 4.0.0-dev

4.3 Header Keywords

4.3.1 IP-keywords
ttl

The ttl keyword is used to check for a specific IP time-to-live value in the header of a packet. The format is:

ttl:<number>

For example:

ttl:10;

At the end of the ttl keyword you can enter the value on which you want to match. The Time-to-live value determines
the maximal amount of time a packet can be in the Internet-system. If this field is set to 0, then the packet has to be
destroyed. The time-to-live is based on hop count. Each hop/router the packet passes subtracts one of the packet TTL
counter. The purpose of this mechanism is to limit the existence of packets so that packets can not end up in infinite
routing loops.

Example of the ttl keyword in a rule:
alert ip SEXTERNAL_NET any -> $HOME_NET any
(msg:"GPL MISC O tH"; ttl:0; classtype:misc-activity;
reference:url, support. microsoft.com/default. aspx?scid=kbH-i-

EM-LUSHF-#-qLl38268; reference:url,www.isi.edu/in-
notes/fcll22 txt; sid:1321; rewt8;)

Ipopts

With the ipopts keyword you can check if a specific ip option is set. Ipopts has to be used at the beginning of a rule.
You can only match on one option per rule. There are several options on which can be matched. These are:

eol End of List

mop NoOP
s Time Stamp

sec IPSecutty
esec IP Extended Security

st LooseSourceRouting
SSIT Strict Source Routing

said | Streamldentifer
any any IP options are set

4.3. Header Keywords 21

Suricata User Guide, Release 4.0.0-dev

Format of the ipopts keyword:

ipopts: <name>

For example:

ipopts: 1lsrr;

Example of ipopts in a rule:

alert ip SEXTERMAL_NET any -» SHOME_NET any
(msg:"GPL MISC source route ssrr”; ipopts:ssrr ;
classtype:bad-unknown, reference:arachnids, 422 sid:502;

rev:2:)

sameip

Every packet has a source IP-address and a destination IP-address. It can be that the source IP is the same as the
destination IP. With the sameip keyword you can check if the IP address of the source is the same as the IP address of
the destination. The format of the sameip keyword is:

sameip;

Example of sameip in a rule:

alert ip any any -= any any (msg"GPL SCAN same
SRC/DST", sameip, classtype:bad-unknown,
reference:bugtrag, 2666; reference:cve,1999-0018;
reference:url, www.cert.org/advisories/CA-1997-28 .himl;

sid:527; rev:8;)

ip_proto

With the ip_proto keyword you can match on the IP protocol in the packet-header. You can use the name or the number
of the protocol. You can match for example on the following protocols:

1

6
17
47
50
51
58

ICMP

TCP

UDP

GRE

ESP

AH
IPv6-ICMP

Internet Control Message
Transmission Control Protocol
User Datagram

General Routing Encapsulation
Encap Security Payload for IPv6
Authentication Header for Ipvé
ICMP for Ipvé6

For the complete list of protocols and their numbers see http://en.wikipedia.org/wiki/List_of_IP_protocol_numbers

Example of ip_proto in a rule:

22

Chapter 4. Suricata Rules

http://en.wikipedia.org/wiki/List_of_IP_protocol_numbers

Suricata User Guide, Release 4.0.0-dev

alert ip any any -= any any (msg:"GPL MISC |P Proto 103
PIM"; ip_proto:103; classtype non-standard-protocol,
reference; bugtraq,8211; reference:cve,2003-0567;
5id:2189; rev:3;)

The named variante of that example would be:

ip_proto:PIM

Id

With the id keyword, you can match on a specific IP ID value. The ID identifies each packet sent by a host and
increments usually with one with each packet that is being send. The IP ID is used as a fragment identification
number. Each packet has an IP ID, and when the packet becomes fragmented, all fragments of this packet have the
same ID. In this way, the receiver of the packet knows which fragments belong to the same packet. (IP ID does not
take care of the order, in that case offset is used. It clarifies the order of the fragments.)

Format of id:

id:<number>;

Example of id in a rule:

alert tcp FEXTERMNAL_NET any -= 3HOME_NET any
(msg:"ET SCAN F5 BIG-IP 3DNS TCP Probe 17 id: 1;
dsize: 24, flags: 5.12; content”|00 00 00 Q0 00 00 Q0 00 00
00 00 00 DO 00 00 DO 0D DO OO 00 00 00 00 00]"; windaw:
2048; classtype: misc-activity;

reference:url,www.fo. comffsproductsivBintrodindex. html;
reference:url,doc.emergingthreats. net’2001609;
reference;url,www.emergingthreats. net/cgi-
bin/cvsweb.cgi/sigs/SCAN/SCAN_FS _BIG-IP_Probe;
5id:2001609; rev:12;)

Geoip

The geoip keyword enables (you) to match on the source, destination or source and destination IP addresses of network
traffic, and to see to which country it belongs. To be able to do this, Suricata uses GeolP API of Maxmind.

The syntax of geoip:

geoip: src, RU;

geoip: both, CN, RU;
geoip: dst, CN, RU, IR;
geoip: both, US, CA, UK;
geoip: any, CN, IR;

So, you can see you can use the following to make clear on which direction you would like to match:

both: both directions have to match with the given geoip (geopip’s)
any: one of the directions have to match with the given geoip (’s).

4.3. Header Keywords 23

Suricata User Guide, Release 4.0.0-dev

dest: if the destination matches with the given geoip.
src: the source matches with the given geoip.

The keyword only supports IPv4. As it uses the GeolP API of Maxmind, libgeoip must be compiled in.

4.3.2 Fragments
Fragbits

With the fragbits keyword, you can check if the fragmentation and reserved bits are set in the IP header. The fragbits
keyword should be placed at the beginning of a rule. Fragbits is used to modify the fragmentation mechanism. During
routing of messages from one Internet module to the other, it can occur that a packet is bigger than the maximal packet
size a network can process. In that case, a packet can be send in fragments. This maximum of the packet size is called
Maximal Transmit Unit (MTU).

You can match on the following bits:

M - More Fragments
D - Do not Fragment
R - Reserved Bit

Matching on this bits can be more specified with the following modifiers:

match on the specified bits, plus any others
* match if any of the specified bits are set
! match if the specified bits are not set

Format:

fragbits: [«+!]<[MDR]>;

Example of fragbits in a rule:

alert tcp 3EXTERMAL_NET any -= BHOME_MET any
(msg:"ET EXPLOIT Invalid non-fragmented packet
with fragment offset=0"; fragbits: IM; fragoffset. =0;
classtype: bad-unknown;

reference:url, doc.emergingthreats_net/binfview/Main/2
001022, reference:url www.emergingthreats. net/cgi-
binfevsweb.cgi/sigs/EXPLOIT/EXPLOIT Invalid_TCP
_Fragments; sid:2001022; rev:5;)

Fragoffset

With the fragoffset keyword you can match on specific decimal values of the IP fragment offset field. If you would
like to check the first fragments of a session, you have to combine fragoffset O with the More Fragment option. The
fragmentation offset field is convenient for reassembly. The id is used to determine which fragments belong to which
packet and the fragmentation offset field clarifies the order of the fragments.

You can use the following modifiers:

24 Chapter 4. Suricata Rules

Suricata User Guide, Release 4.0.0-dev

< match if the value is smaller than the specified value
> match if the value is greater than the specified value
! match if the specified value is not present

Format of fragoffset:

fragoffset:[!|<|>]<number>;

Example of fragoffset in a rule:

alert tep 3EXTERMAL _NET any -= $HOME_NET any
(msg:"ET EXPLOIT Invalid non-fragmented packet
with fragment offset=0"; fragbits: IM; fragoffset: =0;
classtype: bad-unknown;

reference:url, doc.emergingthreats.net/bin/view/Main/2
001022; reference;url www.emergingthreats.net/cgi-
binfcvsweb.cgilsigs/EXPLOIT/EXPLOIT _Invalid_TCP
_Fragments; sid:2001022; rev:5;)

4.3.3 TCP keywords
seq

The seq keyword can be used in a signature to check for a specific TCP sequence number. A sequence number is
a number that is generated practically at random by both endpoints of a TCP-connection. The client and the server
both create a sequence number, which increases with one with every byte that they send. So this sequence number
is different for both sides. This sequence number has to be acknowledged by both sides of the connection. Through
sequence numbers, TCP handles acknowledgement, order and retransmission. Its number increases with every data-
byte the sender has send. The seq helps keeping track of to what place in a data-stream a byte belongs. If the SYN
flag is set at 1, than the sequence number of the first byte of the data is this number plus 1 (so, 2).

Example:

seq:0;

Example of seq in a signature:

alert tcp SEXTERMNAL MNET any -= FHOME_MET any
(msg:"GPL SCAN NULL"™,

flow:stateless; ack:0; flags.0; seq:0;
classtype:attempted-recon;

reference:arachnids 4, sid:623; rev:6;)

Example of seq in a packet (Wireshark):

4.3. Header Keywords 25

Suricata User Guide, Release 4.0.0-dev

T4 EF acar §EEX @
Filter: | - | Expression... | Clear | Apply |
M. - | Time SOurce Diestination Protocol | info
1 0. Daagan fedd: :230: 16ff: feaa:b 182::1:f83:d083 IMPwE Meighbor solicitatian
? 834764 FeBiB: 238 1877 : Teaa:h T782::1 IMPwE Router adverlisemen!
3 9.343192 2089.85.227.13 152.165.8.32 TLSv1 .npplication Data
4 9 343029 192.168.8.32 53567 = https [ACK] 5eq=436627787 Ack=1282214B27 Win=1882 Len=8 TSW=3
5 13.287477 192.168.8,32 289.85.227 .18 TCP [Tor segment of 2 G bt o e
6 13.287598 192.168.8.32 209.85.227.18 TLSv1 Application Data
T 13.332348 289,85 227.14 152.168.8,32 TCP hitps = 54745 [ACK] Seq=2415329985 Ack=417R766438 Win=372 Len=8 Ti¥=1
B 13.447521 289.85.227.18 152.165.9.32 TLSw1l #pplication Data, Application Data
G 13.447555 192.168.58.32 259.085.227.18 TCR 54745 > https [ACK] Seq=41T4T7E6436 Ack=2415238283 Win=203 Len=8 TS¥=3

* Frame 4 |66 bytes on wire, 66 bytes ceptured)
k Ethernet II, Src: Intel 97:17:d6 (88:19:42:97:17:46), Dst: JetwayIn as:be:ab (80:30:18:a3:be:a6)
* Internet Protocol, Sre: 192.168.8.32 ([192.168.8.32), Dst: 289.85.227.19 (209.85.327.19)
T Transmission Cantrol Protocol, Sre Port: 53567 (53567), Dst Port: hitps (443), Seq: 43662TTET, Ack: 1282214827, Len: @
Source port: 53567 (53567
bestination port: https (443)
| Strean indes: @
2Q T
Acknowledgensnt number: 1202214827
Heater Length: 32 bytes
¥ Flags: @x18 {ACK)
Window size: 10802
v Checksum: @xdal? |validation dizabled]
v Dptions: |12 bytes)
» |SEQ/ACK analysis|

E6

0AAE B0 30 18 a@ be ab 08 19 d2 97 1f o6 0B B0 45 8@
BA1E B@ 34 ab 15 40 96 48 06 25 7d @ a6 08 20 d1 55
8928 ©3 13 d1 3f 6L bt 47 af 57 ab g4 18
BH3E B3 o2 4a 17 99 B8 61 B1 @5 G2 9O 38 %b 71 6b o9
BadE bé hd

ack

The ack is the acknowledgement of the receipt of all previous (data)-bytes send by the other side of the TCP-
connection. In most occasions every packet of a TCP connection has an ACK flag after the first SYN and a ack-number
which increases with the receipt of every new data-byte. The ack-keyword can be used in a signature to check for a
specific TCP acknowledgement number.

Format of ack:

ack:1;

Example of ack in a signature:

alert tcp SEXTERNAL_NET any -> $HOME_NET
any (msg."GPL SCAM NULL",

flow:stateless; ack:0; flags:0; seq:0;
classtype:attempted-recon;
reference:arachnids.4; sid:623; rev:6;)

Example of ack in a packet (Wireshark):

26 Chapter 4. Suricata Rules

Suricata User Guide, Release 4.0.0-dev

+ T 4

EE aaa@ @XHEX @
Filter: | = | Expression... | Clear | Apply|
M. - Time Source Diastination Pratocol | Info
1 9.0a0pad fedd: :230: 16ff: feaa:h F182::1:FfB3:d083 I0MPwE Meighbor solicitation
¥ 8347864 Telif: - 238 18TT: fena:h T782::1 ItMPwE Router adverlisement
3 9.343792 289.85.227.19 152.168.98.32 TLSv1 #Application Data
192 160.8.37 2B9_05.227.18 53367 = https [ACK] Seq=436627767
5 13.287477 132.168.8.32 269.85.227.18 TCP [TOP segment of a reasscrbled PDU
6 13. 287598 192.16E.8.32 209_B5.227.18 TLSw1l Application Data
¥ 13,332348 209.85.227.18 152.168.8.32 TCP https = 54745 [ACK] Seq=22152299085 Ack=4170766438 Win=172 Len=8 TS¥=1
B 13.447521 289.85.227.18 152.165.9.32 TLSw1l #pplication Data, Application Data
G 13.447555 192.168.8.32 299.085.227.18 TCR 54745 > hitps [ACK] Seq=d1TaTE6436 Ack=2415238283 Win=203 Len=8 TS¥=3

» Frame 4 |66 bytes on wire, 66 bytes captured)
¢ Ethernet II, Src: Intel 97:17:d6 (@8:19:d42:97:17:d6), Dit: Jetwayln aa:be:ab [86:30:18:a8:be:ab)
» Internet Protecol, Sre: 192.168.8.32 [192.168.8.32), Dst: 389.85.227.19 [209.35.327.19)
* Transmissien Control Protocol, Sre Port: 53567 (53567}, Dst Port: hitps (443), Seq: 436627787, Ack: 1282214827, Len: @
Source port: 53567 (535467
Destination port: hitps (443)
|Strean index: @
Sequence nunber: 436627707

Heater Length: 32 byTes

Flags: ax18 {ACK)

Window size: 18@Z2

Checksum: 9x4al? |validation disabled]
Options: {12 bytes)

|SEQ/ACK analysis|

gAAE B0 30 18 a2 be a6 08 19 d2 97 1f 6 68 B 45 00
BALE BO 34 ab 15 40 08 48 B6 25 7d cB a6 08 20 d1 55
BO26 £3 13 d1 3f 6L bt 1a 66 o5 fb EIECHEREEL 80 19
BA36 B3 ca 4a 12 89 BE B1 B1 95 ©2 89 36 5b /1 ob o9
BAdE hé hd

window

The window keyword is used to check for a specific TCP window size. The TCP window size is a mechanism that has
control of the data-flow. The window is set by the receiver (receiver advertised window size) and indicates the amount
of bytes that can be received. This amount of data has to be acknowledged by the receiver first, before the sender can
send the same amount of new data. This mechanism is used to prevent the receiver from being overflowed by data.
The value of the window size is limited and can be 2 to 65.535 bytes. To make more use of your bandwidth you can
use a bigger TCP-window.

The format of the window keyword:

window: [!]<number>;

Example of window in a rule:

alert tcp $EXTERMNAL_NET any -= $HOME_MNET any
(msg:"GPFL DELETED typot trojan traffic”;
flow:stateless; flags:5,12; window:55808;
classtype:trojan-activity, reference:mcafee, 100406,
sid:2182; rev:E;)

4.3.4 ICMP keywords

ICMP (Internet Control Message Protocol) is a part of IP. IP at itself is not reliable when it comes to delivering data
(datagram). ICMP gives feedback in case problems occur. It does not prevent problems from happening, but helps

4.3. Header Keywords 27

Suricata User Guide, Release 4.0.0-dev

in understanding what went wrong and where. If reliability is necessary, protocols that use IP have to take care
of reliability themselves. In different situations ICMP messages will be send. For instance when the destination is
unreachable, if there is not enough buffer-capacity to forward the data, or when a datagram is send fragmented when
it should not be, etcetera. More can be found in the list with message-types.

There are four important contents of a ICMP message on which can be matched with corresponding ICMP-keywords.
These are: the type, the code, the id and the sequence of a message.

itype

The itype keyword is for matching on a specific ICMP type (number). ICMP has several kinds of messages and uses
codes to clarify those messages. The different messages are distinct by different names, but more important by numeric
values. For more information see the table with message-types and codes.

The format of the itype keyword:

itype:min<>max;
itype: [<|>]<number>;

Example This example looks for an ICMP type greater than 10:

itype:>10;

Example of the itype keyword in a signature:

alert icmp SEXTERNAL_NET any -= JHOME_NET any
(msg:"GPL SCAN Broadscan Smurf Scanner”; dsize: 4,
icmp_id:0; icmp_seq:0; itype:8; classtype:attempted-recon;
sid:478; rev:3;)

icode

With the icode keyword you can match on a specific ICMP code. The code of a ICMP message clarifies the message.
Together with the ICMP-type it indicates with what kind of problem you are dealing with. A code has a different
purpose with every ICMP-type.

The format of the icode keyword:

icode:min<>max;
icode: [<|>]<number>;

Example: This example looks for an ICMP code greater than 5:

icode:>5;

Example of the icode keyword in a rule:

alert icmp FHOME_MET any -= SEXTERMAL MET any
(msg:"GPL MISC Time-To-Live Exceeded in Transit"; icode:0;
itype:11; classtype:misc-activity; sid:449; rev:6;)

28 Chapter 4. Suricata Rules

Suricata User Guide, Release 4.0.0-dev

icmp_id

With the icmp_id keyword you can match on specific ICMP id-values. Every ICMP-packet gets an id when it is being
send. At the moment the receiver has received the packet, it will send a reply using the same id so the sender will
recognize it and connects it with the correct ICMP-request.

Format of the icmp_id keyword:

icmp_id:<number>; ‘

Example: This example looks for an ICMP ID of 0:

icmp_id:0;

Example of the icmp_id keyword in a rule:

alert icmp SEXTERNAL_MET any -= SHOME_NET any
(msg:"GPL SCAN Broadscan Smurf Scanner”; dsize: 4,
icmp_id:0; icmp_seq:0; itype:8; classtype:attempted-recon;
sid:478; rev:3;)

icmp_seq

You can use the icmp_seq keyword to check for a ICMP sequence number. ICMP messages all have sequence numbers.
This can be useful (together with the id) for checking which reply message belongs to which request message.

Format of the icmp_seq keyword:

icmp_seq:<number>;

Example: This example looks for an ICMP Sequence of 0:

icmp_seq:0;

Example of icmp_seq in a rule:

alert icmp $EXTERNAL_NET any -> $HOME_NET any
(msg:"GPL SCAN Broadscan Smurf Scanner”; dsize:4;
icmp_id:0; icmp_seq:0; itype:8; classtype:attempted-recon,
sid:478; rev:3;)

Message types and numbers:

4.3. Header Keywords 29

Suricata User Guide, Release 4.0.0-dev

Type Name

3 Destination Unreachable

5 Redirect

11 Time Exceeded

13 Timestamp

&

Information Request

17 Address Mask Request

Meaning of type-numbers en codes combined:

30

Chapter 4. Suricata Rules

Suricata User Guide, Release 4.0.0-dev

--_

Metwork Uinreachable

3 2 Protocol Unreachable

3 4 Fragmentation needed but no fragment bit set

3 5] Destination network unknown

3 B8 Source host isolated (obsolete)

3 10 Destination host administratively prohibited

3 12 Host unreachable for TOS

3 14 Host precedence violation

4 1] Source quench

5 1 Redirect for host

L] 3 Redirect for TOS and Host

9 0 Router advertisement

11 0 TTL equals 0 during transit

12 0 IP header bad (catchall error)

13 0 Timestamp request (obsolete)

15] Information request (obsolete)

17 0 Address mask request

4.4 Prefilter

The prefilter engines for other non-MPM keywords can be enabled in specific rules by using the ‘prefilter’ keyword.

4.4. Prefilter 31

Suricata User Guide, Release 4.0.0-dev

In the following rule the TTL test will be used in prefiltering instead of the single byte pattern:

’alert ip any any —-> any any (ttl:123; prefilter; content:"a"; sid:1;)

For more information on how to configure the prefilter engines, see Prefilter Engines

4.5 Payload Keywords

4.5.1 pcre (Perl Compatible Regular Expressions)
The keyword pcre matches specific on regular expressions. More information about regular expressions can be found
here http://en.wikipedia.org/wiki/Regular_expression.

The complexity of pcre comes with a high price though: it has a negative influence on performance. So, to mitigate
Suricata from having to check pcre often, pcre is mostly combined with ‘content’. In that case, the content has to
match first, before pcre will be checked.

Format of pcre:

“/<regex>/opts”;

Example of pcre:

’pcre:”/[0—9]{6}/";

In this example there will be a match if the payload contains six numbers following.

Example of pcre in a signature:

drop tcp SHOME_MET any -= SEXTERMAL_MET any (msg:"ET
TROJAN Likely Bot

Mick in IRC (USA +..)" flow established,to_server;
flowbits:isset,is_proto_irc; content."NICK."; pere:"/NICK
JFUSAY0-9]{3.Hi"; classtype:trojan-activity;
reference;url,doc.emergingthreats. net/2008124;

reference:url www.emergingthreats. net/cgi-

binfovsweb.cgisiosVIEUS TROJAN _IRC Bots;
5id:2008124; rev:2;)

There are a few qualities of pcre which can be modified:
* By default pcre is case-sensitive.
e The . (dot) is a part of regex. It matches on every byte except for newline characters.
* By default the payload will be inspected as one line.

These qualities can be modified with the following characters:

pcre is case insensitive
pcre does check newline characters
can make one line (of the payload) count as two lines

3 0 K

These options are perl compatible modifiers. To use these modifiers, you should add them to pcre, behind regex. Like
this:

32 Chapter 4. Suricata Rules

http://en.wikipedia.org/wiki/Regular_expression

Suricata User Guide, Release 4.0.0-dev

pcre: “/<regex>/i";

Pcre compatible modifiers

There are a few pcre compatible modifiers which can change the qualities of pcre as well. These are:
e A: A pattern has to match at the beginning of a buffer. (In pcre ” is similar to A.)
* E: Ignores newline characters at the end of the buffer/payload.

* G: Inverts the greediness.

Note: The following characters must be escaped inside the content: ; \ "

Suricata’s modifiers

Suricata has its own specific pcre modifiers. These are:
* R: Match relative to the last pattern match. It is similar to distance:0;

* U: Makes pcre match on the normalized uri. It matches on the uri_buffer just like uricontent and content com-
bined with http_uri.U can be combined with /R. Note that R is relative to the previous match so both matches
have to be in the HTTP-uri buffer. Read more about H7TP-uri normalization.

PAYLOAD

findex_htmi

content:"/index.”; http_uri; content:"htm”; http_uri; distance:0;
content:"index.”; http_uri; pere:"htmlI?&UR",

content"index.”; http_uri; pere”™index\. himl2/&U";

4.5. Payload Keywords 33

Suricata User Guide, Release 4.0.0-dev

content:"findex."; hitp_uri; content:"htm"; http_uri; distance:0;

N

content"index."; hitp_uri; pcre:”html?3UR";

content;"index.”; _uri; pere:Mindex\ himl 2 U™ i/

content™findex.”; http_uri; content:"htm”; http_uri; distance:0; l/

- 4

cantent"index."; http_uri; pere:"/him?HUR";

content"index."; http_uri; pore:""index.html 205%™ x

content:"findex.”; http_uri; content:"htm”; hitp_uri; distance:0; x
content"index.”; http_uri; pere;"htmI?&UR", v

content:"index.”; http_uri; pcre:"™index\.himl?/&U"; x

e I:Makes pcre match on the HTTP-raw-uri. It matches on the same buffer as http_raw_uri. I can be combined
with /R. Note that R is relative to the previous match so both matches have to be in the HTTP-raw-uri buffer.
Read more about HTTP-uri normalization.

e P: Makes pcre match on the HTTP- request-body. So, it matches on the same buffer as http_client_body. P
can be combined with /R. Note that R is relative to the previous match so both matches have to be in the
HTTP-request body.

34 Chapter 4. Suricata Rules

Suricata User Guide, Release 4.0.0-dev

* Q: Makes pcre match on the HTTP- response-body. So, it matches on the same buffer as http_server_body.
Q can be combined with /R. Note that R is relative to the previous match so both matches have to be in the
HTTP-response body.

e H: Makes pcre match on the HTTP-header. H can be combined with /R. Note that R is relative to the previous
match so both matches have to be in the HTTP-header body.

e D: Makes pcre match on the unnormalized header. So, it matches on the same buffer as http_raw_header. D
can be combined with /R. Note that R is relative to the previous match so both matches have to be in the
HTTP-raw-header.

e M: Makes pcre match on the request-method. So, it matches on the same buffer as http_method. M can be
combined with /R. Note that R is relative to the previous match so both matches have to be in the HTTP-method
buffer.

* C: Makes pcre match on the HTTP-cookie. So, it matches on the same buffer as http_cookie. C can be combined
with /R. Note that R is relative to the previous match so both matches have to be in the HTTP-cookie buffer.

¢ S: Makes pcre match on the HTTP-stat-code. So, it matches on the same buffer as http_stat_code. S can be
combined with /R. Note that R is relative to the previous match so both matches have to be in the HTTP-stat-code
buffer.

e Y: Makes pcre match on the HTTP-stat-msg. So, it matches on the same buffer as http_stat_msg. Y can be
combined with /R. Note that R is relative to the previous match so both matches have to be in the HTTP-stat-
msg buffer.

* B: You can encounter B in signatures but this is just for compatibility. So, Suricata does not use B but supports
it so it does not cause errors.

* 0: Overrides the configures pcre match limit.

* V: Makes pcre match on the HTTP-User-Agent. So, it matches on the same buffer as http_user_agent. V can be
combined with /R. Note that R is relative to the previous match so both matches have to be in the HTTP-User-
Agent buffer.

e W: Makes pcre match on the HTTP-Host. So, it matches on the same buffer as http_host. W can be combined
with /R. Note that R is relative to the previous match so both matches have to be in the HTTP-Host buffer.

4.5.2 Fast Pattern
Suricata Fast Pattern Determination Explained

If the ‘fast_pattern” keyword is explicitly set in a rule, Suricata will use that as the fast pattern match. The ‘fast_pattern’
keyword can only be set once per rule. If ‘“fast_pattern’ is not set, Suricata automatically determines the content to use
as the fast pattern match.

The following explains the logic Suricata uses to automatically determine the fast pattern match to use.

Be aware that if there are positive (i.e. non-negated) content matches, then negated content matches are ignored for
fast pattern determination. Otherwise, negated content matches are considered.

The fast_pattern selection criteria are as follows:

1. Suricata first identifies all content matches that have the highest “priority” that are used in the signature. The
priority is based off of the buffer being matched on and generally ‘http_* buffers have a higher priority (lower
number is higher priority). See Appendix B for details on which buffers have what priority.

2. Within the content matches identified in step 1 (the highest priority content matches), the longest (in terms of
character/byte length) content match is used as the fast pattern match.

4.5. Payload Keywords 35

Suricata User Guide, Release 4.0.0-dev

3. If multiple content matches have the same highest priority and qualify for the longest length, the one with the
highest character/byte diversity score (“Pattern Strength”) is used as the fast pattern match. See Appendix C for
details on the algorithm used to determine Pattern Strength.

4. If multiple content matches have the same highest priority, qualify for the longest length, and the same highest
Pattern Strength, the buffer (“list_id”) that was registered last is used as the fast pattern match. See Appendix B
for the registration order of the different buffers/lists.

5. If multiple content matches have the same highest priority, qualify for the longest length, the same highest
Pattern Strength, and have the same list_id (i.e. are looking in the same buffer), then the one that comes first
(from left-to-right) in the rule is used as the fast pattern match.

It is worth noting that for content matches that have the same priority, length, and Pattern Strength, ‘http_stat_msg’,

‘http_stat_code’, and ‘http_method’ take precedence over regular ‘content’ matches.

Appendices

Appendix A - Buffers, list_id values, and Registration Order for Suricata 1.3.4

This should be pretty much the same for Suricata 1.1.x - 1.4.x.

list_id | Content Modifier Keyword Buffer Name Registration Order
1 <none> (regular content match) | DETECT_SM_LIST_PMATCH 1 (first)
2 http_uri DETECT_SM_LIST_UMATCH 2

6 http_client_body DETECT_SM_LIST_HCBDMATCH | 3

7 http_server_body DETECT_SM_LIST HSBDMATCH | 4

8 http_header DETECT_SM_LIST_HHDMATCH 5

9 http_raw_header DETECT_SM_LIST_HRHDMATCH | 6

10 http_method DETECT_SM_LIST_HMDMATCH 7

11 http_cookie DETECT_SM_LIST_HCDMATCH 8

12 http_raw_uri DETECT_SM_LIST_HRUDMATCH | 9

13 http_stat_msg DETECT_SM_LIST_HSMDMATCH | 10

14 http_stat_code DETECT_SM_LIST_HSCDMATCH | 11

15 http_user_agent DETECT_SM_LIST_HUADMATCH | 12 (last)

Note: registration order doesn’t matter when it comes to determining the fast pattern match for Suricata 1.3.4 but
list_id value does.

Appendix B - Buffers, list_id values, Priorities, and Registration Order for Suricata 2.0.7

This should be pretty much the same for Suricata 2.0.x.

36

Chapter 4. Suricata Rules

Suricata User Guide, Release 4.0.0-dev

Priority (lower number is Registration | Content Modifier Buffer Name list_id

higher priority) Order Keyword

3 11 <none> (regular DE- 1

content match) TECT_SM_LIST PMATCH

3 12 http_method DE- 12
TECT_SM_LIST_HMDMATCH

3 13 http_stat_code DE- 9
TECT_SM_LIST_HSCDMATCH

3 14 http_stat_msg DE- 8
TECT_SM_LIST_HSMDMATCH

2 1 (first) http_client_body DE- 4
TECT_SM_LIST_HCBDMATCH

2 2 http_server_body DE- 5
TECT_SM_LIST_HSBDMATCH

2 3 http_header DE- 6
TECT_SM_LIST_HHDMATCH

2 4 http_raw_header DE- 7
TECT_SM_LIST_HRHDMATCH

2 5 http_uri DE- 2
TECT_SM_LIST_UMATCH

2 6 http_raw_uri DE- 3
TECT_SM_LIST_HRUDMATCH

2 7 http_host DE- 10
TECT_SM_LIST_HHHDMATCH

2 8 http_raw_host DE- 11
TECT_SM_LIST_HRHHDMATICH

2 9 http_cookie DE- 13
TECT_SM_LIST_HCDMATCH|

2 10 http_user_agent DE- 14
TECT_SM_LIST_HUADMATCH

2 15 (last) dns_query DE- 20
TECT_SM_LIST_DNSQUERY |[MATC

Note: list_id value doesn’t matter when it comes to determining the fast pattern match for Suricata 2.0.7 but registration

order does.

Appendix C - Pattern Strength Algorithm

From detect-engine-mpm.c. Basically the Pattern Strength “score” starts at zero and looks at each character/byte in

the passed in byte array from left to right. If the character/byte has not been seen before in the array, it adds

3 to the

score if it is an alpha character; else it adds 4 to the score if it is a printable character, 0x00, 0x01, or OxFF; else it adds

6 to the score. If the character/byte has been seen before it adds 1 to the score. The final score is returned.

/*% \brief Predict a strength value for patterns
*
* Patterns with high character diversity score higher.
* Alpha chars score not so high
* Other printable + a few common codes a little higher
* Everything else highest.
* Longer patterns score better than short patters.
*
* \param pat pattern
* \param patlen length of the patternn
*

4.5. Payload Keywords

37

Suricata User Guide, Release 4.0.0-dev

* \retval s pattern score

*/

uint32_t PatternStrength (uint8_t xpat, uintlé6_t patlen) {
uint8_t a[256];
memset (&a, 0 ,sizeof(a));
uint32_t s = 0;

uintl6é_t u = 0;
for (u = 0; u < patlen; u++) {
if (a[pat[ul]ll]l == 0) {
if (isalpha(pat([ul))
s += 35
else if (isprint (pat[ul]) || pat[u] == 0x00 || pat[u] == 0x01 || patlu],
—== OXFF)
s += 4;
else
s += 65
alpatf[ull = 1;
} else {
s++;

}

return s;

Only one content of a signature will be used in the Multi Pattern Matcher (MPM). If there are multiple contents, then
Suricata uses the ‘strongest’ content. This means a combination of length, how varied a content is, and what buffer
it is looking in. Generally, the longer and more varied the better. For full details on how Suricata determines the fast
pattern match, see Suricata Fast Pattern Determination Explained.

Sometimes a signature writer concludes he wants Suricata to use another content than it does by default.

For instance:

User—-agent: Mozilla/5.0 Badness;

content :”User—-Agent |3A|";
content :”Badness”; distance:0;

In this example you see the first content is longer and more varied than the second one, so you know Suricata will
use this content for the MPM. Because ‘User-Agent:” will be a match very often, and ‘Badness’ appears less often in
network traffic, you can make Suricata use the second content by using ‘fast_pattern’.

content:”User—-Agent |3A]";
content :”Badness”; distance:0; fast_pattern;

The keyword fast_pattern modifies the content previous to it.

content:"User-Agent 34)”;
content:"Badness"; distance:0; fast_pattern,

tc‘-.._____..-"'"

Fast-pattern can also be combined with all previous mentioned keywords, and all mentioned HTTP-modifiers.

38 Chapter 4. Suricata Rules

Suricata User Guide, Release 4.0.0-dev

fast_pattern:only

Sometimes a signature contains only one content. In that case it is not necessary Suricata will check it any further
after a match has been found in MPM. If there is only one content, the whole signature matches. Suricata notices
this automatically. In some signatures this is still indicated with ‘fast_pattern:only;’. Although Suricata does not need
fast_pattern:only, it does support it.

Fast_pattern: ‘chop’

If you do not want the MPM to use the whole content, you can use fast_pattern ‘chop’.

For example:

content: “aaaaaaaaabc”; fast_pattern:8,4;

This way, MPM uses only the last four characters.

Payload keywords inspect the content of the payload of a packet or stream.

4.5.3 Content

The content keyword is very important in signatures. Between the quotation marks you can write on what you would
like the signature to match. The most simple format of content is:

It is possible to use several contents in a signature.

Contents match on bytes. There are 256 different values of a byte (0-255). You can match on all characters; from a till
z, upper case and lower case and also on all special signs. But not all of the bytes are printable characters. For these
bytes heximal notations are used. Many programming languages use 0x00 as a notation, where 0x means it concerns a
binary value, however the rule language uses | 00 | as a notation. This kind of notation can also be used for printable
characters.

Example:

|61] is a

|61 61] is aa

|41 is A

[21] is !

|0D| is carriage return
|0A] is line feed

There are characters you can not use in the content because they are already important in the signature. For matching
on these characters you should use the heximal notation. These are:

" 122
i 3B
: | 3A |
| [7C|

It is a convention to write the heximal notation in upper case characters.

To write for instance http:// in the content of a signature, you should write it like this: content:
“http|3A|//"; If you use a heximal notation in a signature, make sure you always place it between pipes. Other-
wise the notation will be taken literally as part of the content.

4.5. Payload Keywords 39

Suricata User Guide, Release 4.0.0-dev

A few examples:

content:%“a|0D|bc”;
content:” |61 0D 62 63|";
content:”al|0D|b|63|";

It is possible to let a signature check the whole payload for a match with the content or to let it check specific parts
of the payload. We come to that later. If you add nothing special to the signature, it will try to find a match in all the
bytes of the payload.

Example:

drop tcp FHOME_MET any -= SEXTERMAL_NET any (msg:"ET
TROJAN Likely Bot

Mick in IRC (USA+..)"; flow:established.to_server;
flowbits:isset,is_proto_ire, content:"NICK. "; pore:"fNICK
JUSAMO-9H3E M classtypetrojan-activity;
reference:url,doc_emergingthreats net’2008124,

reference:url, www.emergingthreats, net/'coi-
bin/cvsweb.cgifsigsVIRUSITROJAN _IRC_Bots;

sid: 2008124, rev:2;)

In this example, the red, bold-faced part is the content.

By default the pattern-matching is case sensitive. The content has to be accurate, otherwise there will not be a match.

PAYLOAD

abCdefghlj

content:"abc”; x
content:"aBc”; x

content:"abC";

Legend:

40 Chapter 4. Suricata Rules

Suricata User Guide, Release 4.0.0-dev

match

x no match

match in the payload

t no match in the payload

It is possible to use the ! for exceptions in contents as well.

For example:

alert http $HOME_NET any -> SEXTERNAL_NET any (msg:"Outdated Firefox on
Windows"; content:"User—-Agent|3A| Mozilla/5.0 |28|Windows|3B| ";
content:"Firefox/3."; distance:0; content:!"Firefox/3.6.13";
distance:-10; sid:9000000; rev:1;)

You see content:!”Firefox/3.6.13”;. This means an alert will be generated if the the used version of
Firefox is not 3.6.13.

Note: The following characters must be escaped inside the content: ; \ "

4.5.4 Nocase

If you do not want to make a distinction between uppercase and lowercase characters, you can use nocase. The
keyword nocase is a content modifier.

The format of this keyword is:

’nocase;

You have to place it after the content you want to modify, like:

’content: “abc”; nocase;

Example nocase:

4.5. Payload Keywords 41

Suricata User Guide, Release 4.0.0-dev

PAYLOAD

abCldefghlj

content:"abc”; nocase;
content:"aBc"; nocase;

content:"abC"; nocase;

It has no influence on other contents in the signature.

4.5.5 Depth

The depth keyword is a absolute content modifier. It comes after the content. The depth content modifier comes with
a mandatory numeric value, like:

depth:12;

The number after depth designates how many bytes from the beginning of the payload will be checked.

Example:

42 Chapter 4. Suricata Rules

Suricata User Guide, Release 4.0.0-dev

PAYLOAD

content:"def"; depth:3; x

content:"abc”; depth:3;

4.5.6 Offset

The offset keyword designates from which byte in the payload will be checked to find a match. For instance offset:3;
checks the fourth byte and further.

4.5. Payload Keywords 43

Suricata User Guide, Release 4.0.0-dev

offset
content:"abc”; offset:3; x
content:"def™ offset:3: v

The keywords offset and depth can be combined and are often used together.

For example:

content; “def”; offset:3; depth:3;

If this was used in a signature, it would check the payload from the third byte till the sixth byte.

depth

offset

content”def"; offset:3; depth:3; v

44 Chapter 4. Suricata Rules

Suricata User Guide, Release 4.0.0-dev

4.5.7 Distance

The keyword distance is a relative content modifier. This means it indicates a relation between this content keyword
and the content preceding it. Distance has its influence after the preceding match. The keyword distance comes with a
mandatory numeric value. The value you give distance, determines the byte in the payload from which will be checked
for a match relative to the previous match. Distance only determines where Suricata will start looking for a pattern.
So, distance:5; means the pattern can be anywhere after the previous match + 5 bytes. For limiting how far after the
last match Suricata needs to look, use ‘within’.

Examples of distance:
content;"abc”; content:"kim”; distance: O,
1 2 3

The distance (3), tells how the second (2)
content relates to the first (1) content.

PAYLOAD

distance

content:"abe™: content:"kim™: distance: 0 x

checked area using 'distance’

4.5. Payload Keywords 45

Suricata User Guide, Release 4.0.0-dev

content:"abc”; content:"def"; distance:0; '/

content:"abe™: content:"bed”; distance:0; x

distance
distance

content:."abc”;, content:"def"; distance:0; f

content:"abc”; content:"def”; distance:4; V’

Distance can also be a negative number. It can be used to check for matches with partly the same content (see example)

or for a content even completely before it. This is not very often used though. It is possible to attain the same results
with other keywords.

46 Chapter 4. Suricata Rules

Suricata User Guide, Release 4.0.0-dev

PAYLOAD

diefghij

content:”abc”; content:"bcd™; distance:-2;

4.5.8 Within

The keyword within is relative to the preceding match. The keyword within comes with a mandatory numeric value.
Using within makes sure there will only be a match if the content matches with the payload within the set amount of

bytes. Within can not be 0 (zero)

Example:
content:"abc”; content:"kim™; within:3;

e

1 2 3

The keyword within (3), tells how the second
(2) content relates to the first (1) content.

Example of matching with within:

4.5. Payload Keywords

47

Suricata User Guide, Release 4.0.0-dev

content:"abc”; content:"def"; within:3; I/
content:"abc”; content:"fgh”; within:3; x

The second content has to fall/come ‘within 3 ¢ from the first content.

As mentioned before, distance and within can be very well combined in a signature. If you want Suricata to check a
specific part of the payload for a match, use within.

within
distance

content:"abc”; content:"del"; distance:0; within:3; x

48 Chapter 4. Suricata Rules

Suricata User Guide, Release 4.0.0-dev

PAYLOAD

within

distance

content:"abc™; content:def”; distance:1; within:4,

4.5.9 Isdataat

The purpose of the isdataat keyword is to look if there is still data at a specific part of the payload. The keyword starts
with a number (the position) and then optional followed by ‘relative’ separated by a comma and the option rawbytes.
You use the word ‘relative’ to know if there is still data at a specific part of the payload relative to the last match.

So you can use both examples:

isdataat:512;

isdataat:50, relative;

The first example illustrates a signature which searches for byte 512 of the payload. The second example illustrates a
signature searching for byte 50 after the last match.

You can also use the negation (!) before isdataat.

4.5. Payload Keywords 49

Suricata User Guide, Release 4.0.0-dev

PAYLOAD

abcldefghij

isdataat

content:"abc”; isdataat:6, relative;

content:"abc”; isdataat: 8, relative; x

4.5.10 Dsize

With the dsize keyword, you can match on the size of the packet payload. You can use the keyword for example to
look for abnormal sizes of payloads. This may be convenient in detecting buffer overflows.

Format:

dsize:<number>;

example of dsize in a rule:

alert udp $EXTERNAL_NET any -> $HOME_NET
65535 (msg:."GPL DELETED EXPLOIT LANDesk
Management Suite Alerting Service buffer overflow”,;
dsize:>268; classtype: attempted-admin;
reference:bugtraq,23483; reference:cve,2007-1674;
sid:100000928; rev:l;)

4.5.11 rpc

The rpc keyword can be used to match in the SUNRPC CALL on the RPC procedure numbers and the RPC version.

You can modify the keyword by using a wild-card, defined with * With this wild-card you can match on all version
and/or procedure numbers.

RPC (Remote Procedure Call) is an application that allows a computer program to execute a procedure on another com-
puter (or address space). It is used for inter-process communication. See http://en.wikipedia.org/wiki/Inter-process_
communication

Format:

50 Chapter 4. Suricata Rules

http://en.wikipedia.org/wiki/Inter-process_communication
http://en.wikipedia.org/wiki/Inter-process_communication

Suricata User Guide, Release 4.0.0-dev

rpc:<application number>, [<version number>|x], [<procedure number>|x*]>;

Example of the rpc keyword in a rule:

alert udp $EXTERMAL MET any -= $SHOME_NET 111
(msg:"RPC portmap request

yppasswdd"; rpc:100009,*,*; reference:bugtraq,2763;
classtype:rpc-portmap-decode; sid:1296; rev4;)

4.5.12 Replace

The replace content modifier can only be used in ips. It adjusts network traffic. It changes the content it follows (‘abc’)
into another (‘def”), see example:

content: “abc”; replace: “def”;
-~

PAYLOAD PAYLOAD
abc m del

The replace modifier has to contain as many characters as the content it replaces. It can only be used with individual
packets. It will not work for Normalized Buffers like HTTP uri or a content match in the reassembled stream.

The checksums will be recalculated by Suricata and changed after the replace keyword is being used.

4.5.13 pcre

For information about pcre check the pcre (Perl Compatible Regular Expressions) page.

4.5.14 fast_pattern

For information about fast_pattern check the Fast Pattern page.

4.6 HTTP Keywords

There are additional content modifiers that can provide protocol-specific capabilities at the application layer. More
information can be found at Payload Keywords These keywords make sure the signature checks only specific parts of
the network traffic. For instance, to check specifically on the request URI, cookies, or the HTTP request or response
body, etc.

4.6. HTTP Keywords 51

Suricata User Guide, Release 4.0.0-dev

4.6.1 Types of modifiers

There are 2 types of modifiers. The older style ‘content modifiers’ look back in the rule.

Example:

alert http any any —-> any any (content:"index.php";

http_uri; sid:1;)

In the above example the pattern ‘index.php’ is modified to inspect the HTTP uri buffer.

The more recent type is called the ‘sticky buffer’. It places the buffer name first and all keywords following it apply to

that buffer.

Example:

alert http any any

> any any (http_response_line; content:"403 Forbidden"; sid:1;)

In the above example the pattern ‘403 Forbidden’ is inspected against the HTTP response line because it follows the
http_response_line keyword.

The following request keywords are available:

Keyword Sticky or Modifier | Direction
http_uri Modifier Request
http_raw_uri Modifier Request
http_method Modifier Request
http_request_line Sticky Buffer Request
http_client_body Modifier Request
http_header Modifier Both
http_raw_header Modifier Both
http_cookie Modifier Both
http_user_agent Modifier Request
http_host Modifier Request
http_raw_host Modifier Request
http_accept Sticky Buffer Request
http_accept_lang Sticky Buffer Request
http_accept_enc Sticky Buffer Request
http_referer Sticky Buffer Request
http_connection Sticky Buffer Request
http_content_type Sticky Buffer Both
http_content_len Sticky Buffer Both
http_start Sticky Buffer Both
http_protocol Sticky Buffer Both
http_header_names | Sticky Buffer Both

The following response keywords are available:

52

Chapter 4. Suricata Rules

Suricata User Guide, Release 4.0.0-dev

Keyword Sticky or Modifier | Direction
http_stat_msg Modifier Response
http_stat_code Modifier Response
http_response_line | Sticky Buffer Response
http_header Modifier Both
http_raw_header Modifier Both
http_cookie Modifier Both
http_server_body Modifier Response
file_data Sticky Buffer Response
http_content_type Sticky Buffer Both
http_content_len Sticky Buffer Both
http_start Sticky Buffer Both
http_protocol Sticky Buffer Both
http_header_names | Sticky Buffer Both

It is important to understand the structure of HTTP requests and responses. A simple example of a HTTP request and
response follows:

4.6.2 HTTP request

GET /index.html HTTP/1.0\r\n

GET is a request method. Examples of methods are: GET, POST, PUT, HEAD, etc. The URI pathis /index.html
and the HTTP version is HTTP /1. 0. Several HTTP versions have been used over the years; of the versions 0.9, 1.0
and 1.1, 1.0 and 1.1 are the most commonly used today.

4.6.3 HTTP response

HTTP/1.0 200 OK\r\n

<html>

<title> some page </title>
</HTML>

In this example, HTTP/1.0 is the HTTP version, 200 the response status code and OK the response status message.
Another more detailed example:

Request:

4.6. HTTP Keywords 53

Suricata User Guide, Release 4.0.0-dev

HTTP-method, keyword,
http_method

HTTP-uri, keywords: hitp_uri
ar http_r

Host www.google.com HTTP-header, keywords:
keep-alive http_header, http_raw_header
lozilla!5.0 (X11; U;

fi PR ey
(KHTR
Lpuntuw

Cookie: HTTP-cookie, keyword:
PREF=ID=efae3tct3adbfabad:U= http_cookie
aalcf39996084d7e TM=1252314
621:LM=1292956821.GM=1:5=d

YiecyMBicerAdTh

Response:

54 Chapter 4. Suricata Rules

Suricata User Guide, Release 4.0.0-dev

HTTF/1.1 302

Location: http:dhanww.goagle. nlf
Cache-Caontrol: p
Content-Type: text/himl;
charset=UTF-8
Set-Cookie:
efe3fch3a3blfatad:FF
16 M=129310

«eKylaBhZkPrZEk

=Sat, 22-Dec-2012
06 GMT,; path=/;
1ain=.google.com

Date: Thu, 23 Dec 2010 11:40:06
GMT
Server: gws
Content-Length: 218
X-XS5-Protection: 1; mode=block

=HTML==HEAD=<meta hitp-
equiv="content-typa"
content="text/html; charset=utf-
g'=

<TITLE=302
Moved</TITLE></HEAD=><BODY
=]

=H1=302 Moved=/H1>

The document has moved

<A
HREF="http:fuwvmnn.google.nl=he
re=ff=.

= BODY =</HTML=

Request:

HTTP-header, keywords:

http_header, http_raw_header

HTTP-response hody,
keywaords: file_data,
http_senver_body

4.6. HTTP Keywords

55

Suricata User Guide, Release 4.0.0-dev

POST {HTTP/L.0 HTTP-method, keyword:
http_method
HTTP-uri 5: hittp_uri

Accept: = HTTPR-header, keywords:
Accept-Language: en-US http_header, http_raw_header
x-flash-version: 9,0,115,0

Content-Type: application/x-

www-form-urlencoded
Content-Length: 31
Accept-Encoding: bbbbbbbbblate
User-Agent: Mozilla/4.0
(compatible; MSIE 6.0; Windows
MT 5.1; 5V1)

Host: nowhereasdfasdf.com
Connection; Keep-Alive
Cache-Control: no-cache

type=playerstart&position=tidal ~ HTTP-client body, keyword:
http_client_body

Although cookies are sent in an HTTP header, you can not match on them with the ht tp_header keyword. Cookies
are matched with their own keyword, namely http_cookie.

Each part of the table belongs to a so-called buffer. The HTTP method belongs to the method buffer, HTTP headers
to the header buffer etc. A buffer is a specific portion of the request or response that Suricata extracts in memory for
inspection.

All previous described keywords can be used in combination with a buffer in a signature. The keywords distance
and within are relative modifiers, so they may only be used within the same buffer. You can not relate content
matches against different buffers with relative modifiers.

4.6.4 http_method

With the http_method content modifier, it is possible to match specifically and only on the HTTP method
buffer. The keyword can be used in combination with all previously mentioned content modifiers such as: depth,
distance, offset, nocase and within.

Examples of methods are: GET, POST, PUT, HEAD, DELETE, TRACE, OPTIONS, CONNECT and PATCH.

Example of a method in a HTTP request:

GET/HTTR/L.1

Host www.google.com

Connection: keep-alive

Accept:

application/xmlapplication/xhtmi+xml text/html;g=0.9 text/
plain:g=0.8.image/png,**.q=0.5

Example of the purpose of method:

56 Chapter 4. Suricata Rules

Suricata User Guide, Release 4.0.0-dev

content"GET™: v

content."GET"; http_method V’

v" match
x no maich

match in the payload

; no match in the payload

4.6. HTTP Keywords 57

Suricata User Guide, Release 4.0.0-dev

PAYLOAD

POST NEWS.htmI HTTP/L.O\AN

content"GET";

content"GET"; http_method X

content:"POST"; http_method

4.6.5 http_uri and http_raw_uri

With the http_uri and the http_raw_uri content modifiers, it is possible to match specifically and only on the
request URI buffer. The keyword can be used in combination with all previously mentioned content modifiers like
depth, distance, offset, nocase and within.

To learn more about the difference between http_uri and http_raw_uri, please read the information about
HTTP-uri normalization.

Example of the URI in a HTTP request:

GET lindex.html HTTP/1.0\f\n

Example of the purpose of http_uri:

58 Chapter 4. Suricata Rules

Suricata User Guide, Release 4.0.0-dev

PAYLOAD

r

content: “findex. html";, hitp_uri;
content: "GET™; http_uri; x

content: “findex™, hittp_uri; content: “html";
http_uri; withim: 5;

content: “findex"; hitp_uri; depth:g;

Example of the purpose of http_raw_uri:

#.. image:: http-keywords/raw_uri.png

4.6.6 uricontent

The uricontent keyword has the exact same effect as the ht tp_uri content modifier. uricontent is a depre-
cated (although still supported) way to match specifically and only on the request URI buffer.

Example of uricontent:

alert tcp SHOME_NET any -> SEXTERNAL MNET
FHTTP_PORTS (msg:"ET TROJAN

Possible Vundo Trojan Variant reporting to Controller”;
flow:established,to_server; content:"POST “; depth:5;
uricontent:"/frame . html?": urilen: = 80:
classtype:trojan-activity;
reference:url,doc.emergingthreats.net/2009173;
reference:url, www.emergingthreats.net/cgi-
bin/cvsweb.cgi/sigs/VIRUS/TROJAN_Vundo;
sid:2009173; rev:2;)

The difference between http_uri and uricontent is the syntax:

uricontent: “abc”;

~_ 7T

content: "abc”; http_uri

When authoring new rules, it is recommended that the ht tp_uri content modifier be used rather than the deprecated
uricontent keyword.

4.6. HTTP Keywords 59

Suricata User Guide, Release 4.0.0-dev

4.6.7 urilen

The urilen keyword is used to match on the length of the request URL. It is possible to use the < and > operators,
which indicate respectively smaller than and larger than.

The format of urilenis:

urilen:3;

Other possibilities are:

urilen:1;

urilen:>1;

urilen:<10;

urilen:10<>20; (bigger than 10, smaller than 20)

Example:

PAYLOAD

fpicturesHTTP/1.0

urilen:10;
urilen:<10; X
urilen:5<>20;
urilen:20, x

urilen:=4,

Example of urilen in a signature:

alert tcp SHOME_MET any -= SEXTERMAL NET
BHTTP_PORTS (msg:"ET TROJAN

Possible Vundo Trojan Variant reparting to Controller”;
flow:established.to_server, content:"POST ", depth:5;
uricontent:"fframe.html?"; urilen: = 80; classtype:trojan-
activity;

reference:url,doc.emergingthreats.net’2009173;
reference:url, www.emergingthreats. net/cgi-

bin/cvsweb. coifsigs/VIRUS/ITROJAN Vundo;
sid:2009173; rev:2;)

You can also append norm or raw to define what sort of buffer you want to use (normalized or raw buffer).

60 Chapter 4. Suricata Rules

Suricata User Guide, Release 4.0.0-dev

4.6.8 http_protocol

The http_protocol inspects the protocol field from the HTTP request or response line. If the request line is ‘GET
/ HTTP/1.0rn’, then this buffer will contain ‘HTTP/1.0’.

Example:

alert http any any -> any any (flow:to_server; http_protocol; content:"HTTP/1.0";
—sid:1;)

4.6.9 http_request_line

The http_request_1line forces the whole HTTP request line to be inspected.

Example:

alert http any any -> any any (http_request_line; content:"GET / HTTP/1.0"; sid:1;)

4.6.10 http_header and http_raw_header

With the http_header content modifier, it is possible to match specifically and only on the HTTP header buffer.
This contains all of the extracted headers in a single buffer, except for those indicated in the documentation that are
not able to match by this buffer and have their own content modifier (e.g. http_cookie). The modifier can be used
in combination with all previously mentioned content modifiers, like depth, distance, offset, nocase and
within.

Note: the header buffer is normalized. Any trailing whitespace and tab characters are removed. See:
http://lists.openinfosecfoundation.org/pipermail/oisf-users/2011-October/000935.html. To avoid that, use
the http_raw_header keyword.

Example of a header in a HTTP request:

GETIHTTP/L.1

Host: www.google.com

Connection: keep-alive

Accept:

application/xml,application/xhtml+xml, text/html;q=0.9,
textiplain;g=0.8,imagel/png,*/*;q=0.5

Example of the purpose of http_header:

4.6. HTTP Keywords 61

http://lists.openinfosecfoundation.org/pipermail/oisf-users/2011-October/000935.html

Suricata User Guide, Release 4.0.0-dev

PAYLOAD

content:"www.google.com”; hitp_header ;

content:"GET™; http_header; x

PAYLOAD

[GET) HTTPIL1

Host www.google.com

Connection: |keep-alive

content:"GET™;

content."KEEP-ALIVE"; nocase; http_header

4.6.11 http_cookie

With the ht tp_cookie content modifier, it is possible to match specifically and only on the cookie buffer. The key-
word can be used in combination with all previously mentioned content modifiers like depth, distance, offset,
nocase and within.

Note that cookies are passed in HTTP headers, but are extracted to a dedicated buffer and matched using their own
specific content modifier.

Example of a cookie in a HTTP request:

62 Chapter 4. Suricata Rules

Suricata User Guide, Release 4.0.0-dev

User-Agent: Mozilla/s.0 (X11; U; Linux i686; en-USs)
AppleWebKit/534.16

(KHTML, like Gecko) Ubuntu/10.10 Chromium/10.0.618.0
Chromef10.0.618.0

Safari/534.16

Accept-Encoding: gzip,deflate,sdch

Accepl-Language: en-US en;g=0.8

Accepl-Charsel: [S0-8859-1,utf-8:=0.7,*:q=0.3

Cookie:
PREF=ID=efe36c63a3bfatad:U=aa0cf39996084d7e: TM
=1252314621:L M=1292956821:GM=1:5=dYtecyNBioer
AATh

Example of the purpose of http_cookie:

PAYLOAD

GETIHTTP/L.1

Accept-Charset?|SO-8859:1,utf-8,g=0.7,*,q=
0.3Cookie:PREF=|D=efe36c63a3bfabad:U
=aa0cf39996044d7¢ TM
=1252314621:LM=1292956821:GM
=1:S=dYtecyNBioerA47h

content:"4d7e"; http_uri;

content:"|SO-8859"; http_uri; X

content:"4d7e"; http_cookie; depth: 13; x

4.6.12 http_user_agent

The http_user_agent content modifier is part of the HTTP request header. It makes it possible to match specif-
ically on the value of the User-Agent header. It is normalized in the sense that it does not include the _"User-Agent:
“_ header name and separator, nor does it contain the trailing carriage return and line feed (CRLF). The keyword can
be used in combination with all previously mentioned content modifiers like depth, distance, offset, nocase
and within. Note that the pcre keyword can also inspect this buffer when using the /v modifier.

Normalization: leading spaces are not part of this buffer. So “User-Agent: rn” will result in an empty
http_user_agent buffer.

Example of the User-Agent header in a HTTP request:

4.6. HTTP Keywords 63

Suricata User Guide, Release 4.0.0-dev

GETIHTTPIL.1

Host: www.google.com

Connection: keep-alive

User-Agent: Mozilla/5.0 (X11; U; Linux i686; en-US)
AppleWebKit/534.16

{KHTML, like Gecko) Ubuntw/10.10
Chromium/10.0.618.0 Chromef10.0.618.0
Safarif534.16

Example of the purpose of http_user_agent:

Connection: keep-alive

U&er-ﬁgent:{xu; U; Linux i686; en-US)
AppleWebKit/534, 16 (KHTML, like Gecko) Ubuntu/10.10
Chromium/10.0.618.0 Chrome/10.0.618.0 Salarl/534.16

caontent:"Mozilla’5.07; hitp_user_agent;

content:"google.com”; hitp_user_agent; x

Notes

The http_user_agent buffer will NOT include the header name, colon, or leading whitespace. i.e. it will
not include “User-Agent: ”.

The http_user_agent buffer does not include a CRLF (0x0D 0x0A) at the end. If you want to match the
end of the buffer, use a relative isdataat or a PCRE (although PCRE will be worse on performance).

If a request contains multiple “User-Agent” headers, the values will be concatenated in the

http_user_agent buffer, in the order seen from top to bottom, with a comma and space (”, ”’) between
each of them.

Example request:

GET /test.html HTTP/1.1
User-Agent: SuriTester/0.8
User—Agent: GGGG

http_user_agent buffer contents:

SuriTester/0.8, GGGG

Corresponding PCRE modifier: vV

Using the http_user_agent buffer is more efficient when it comes to performance than using the
http_header buffer (~10% better).

http://blog.inliniac.net/2012/07/09/suricata-http_user_agent-vs-http_header/

64

Chapter 4. Suricata Rules

http://blog.inliniac.net/2012/07/09/suricata-http_user_agent-vs-http_header/

Suricata User Guide, Release 4.0.0-dev

4.6.13 http_accept

Sticky buffer to match on the HTTP Accept header. Only contains the header value. The \r\n after the header are not
part of the buffer.

Example:

alert http any any -> any any (http_accept; content:"image/gif"; sid:1;)

4.6.14 http_accept_enc

Sticky buffer to match on the HTTP Accept-Encoding header. Only contains the header value. The \r\n after the header
are not part of the buffer.

Example:

alert http any any -> any any (http_accept_enc; content:"gzip"; sid:1;)

4.6.15 http_accept_lang

Sticky buffer to match on the HTTP Accept-Language header. Only contains the header value. The \r\n after the
header are not part of the buffer.

Example:

alert http any any —-> any any (http_accept_lang; content:"en-us"; sid:1;)

4.6.16 http_connection

Sticky buffer to match on the HTTP Connection header. Only contains the header value. The \r\n after the header are
not part of the buffer.

Example:

alert http any any —-> any any (http_connection; content:"keep-alive"; sid:1;)

4.6.17 http_content_type

Sticky buffer to match on the HTTP Content-Type headers. Only contains the header value. The \r\n after the header
are not part of the buffer.

Use flow:to_server or flow:to_client to force inspection of request or response.

Examples:

alert http any any -> any any (flow:to_server; \
http_content_type; content:"x-www-form-urlencoded"; sid:1;)

alert http any any —-> any any (flow:to_client; \
http_content_type; content:"text/javascript"; sid:2;)

4.6. HTTP Keywords 65

Suricata User Guide, Release 4.0.0-dev

4.6.18 http_content_len

Sticky buffer to match on the HTTP Content-Length headers. Only contains the header value. The \r\n after the header
are not part of the buffer.

Use flow:to_server or flow:to_client to force inspection of request or response.

Examples:

alert http any any -> any any (flow:to_server; \
http_content_len; content:"666"; sid:1;)

alert http any any -> any any (flow:to_client; \
http_content_len; content:"555"; sid:2;)

To do a numeric inspection of the content length, byte_test can be used.

Example, match if C-L is equal to or bigger than 8079:

alert http any any -> any any (flow:to_client; \
http_content_len; byte_test:0,>=,8079,0,string,dec; sid:3;)

4.6.19 http_referer

Sticky buffer to match on the HTTP Referer header. Only contains the header value. The \r\n after the header are not
part of the buffer.

Example:

alert http any any -> any any (http_referer; content:".php"; sid:1;)

4.6.20 http_start

Inspect the start of a HTTP request or response. This will contain the request/reponse line plus the request/response
headers. Use flow:to_server or flow:to_client to force inspection of request or response.

Example:

alert http any any -> any any (http_start; content:"HTTP/1.1|0d Oal|User—-Agent"; sid:1;
<)

The buffer contains the normalized headers and is terminated by an extra \r\n to indicate the end of the headers.

4.6.21 http_header_names

Inspect a buffer only containing the names of the HTTP headers. Useful for making sure a header is not present or
testing for a certain order of headers.

Buffer starts with a \r\n and ends with an extra \r\n.

Example buffer:

\\r\\nHost\\r\\n\\r\\n

Example rule:

66 Chapter 4. Suricata Rules

Suricata User Guide, Release 4.0.0-dev

alert http any any -> any any (http_header_names; content:"|0d Oa|Host|0d Oal|"; sid:1;

)

Example to make sure only Host is present:

alert http any any -> any any (http_header_names; \
content:"|0d Oa 0d Oal|Host|0d Oa 0d Oal|"; sid:1;)

Example to make sure User-Agent is directly after Host:

alert http any any —-> any any (http_header_names; \
content:"|0d Oa|Host|0d 0Oa|User-Agent|0d Oal|"; sid:1;)

Example to make sure User-Agent is after Host, but not necessarily directly after:

alert http any any -> any any (http_header_names; \
content:"|0d Oa|Host|0d Oal|"; content:"|Oa 0d|User—-Agent|0d Oal|"; \
distance:-2; sid:1;)

4.6.22 http_client_body

With the http_client_body content modifier, it is possible to match specifically and only on the HTTP request
body. The keyword can be used in combination with all previously mentioned content modifiers like distance,
offset,nocase, within, etc.

Example of http_client_body in a HTTP request:

Host: nowhereasdfasdf.com
Connection: Keep-Alive
Cache-Control; no-cache

type=playerStart&position=tidal

Example of the purpose of http_client_body:

4.6. HTTP Keywords 67

Suricata User Guide, Release 4.0.0-dev

PAYLOAD

POST / HTTP/1.0

content:"playerstan&position”, http_client_body;
content:"'no-cache”; hitp_client_body; x

content:"playerStart™; depth: 16; http_client_body;

content:"playerstar™; http_client_body;
content:"&paosition”; distance:0; within:9

Note: how much of the request/client body is inspected is controlled in the libhtp configuration section via the
request-body-limit setting.

4.6.23 http_stat_code
With the http_stat_code content modifier, it is possible to match specifically and only on the HTTP status code

buffer. The keyword can be used in combination with all previously mentioned content modifiers like distance,
offset, nocase, within, etc.

Example of http_stat_code in a HTTP response:

HTTP/1.1 302 Found

Example of the purpose of http_stat_code:

68 Chapter 4. Suricata Rules

Suricata User Guide, Release 4.0.0-dev

content:"302"; http_stat_code;

content:"found”; http_stat_code;

N> N

content:"302"; http_stat_code; depth:5;

4.6.24 http_stat_msg

With the http_stat_msg content modifier, it is possible to match specifically and only on the HTTP status mes-
sage buffer. The keyword can be used in combination with all previously mentioned content modifiers like depth,
distance, offset, nocase and within.

Example of http_stat_msg in a HTTP response:

HTTP/.1 302 Found

Example of the purpose of http_stat_msg:

content."Found”; http_stat_msqg;

content:"1.1"; http_stat_msg;

NN

content:"found”; http_stat_msg; nocase;

4.6. HTTP Keywords 69

Suricata User Guide, Release 4.0.0-dev

4.6.25 http_response_line

The http_response_1line forces the whole HTTP response line to be inspected.

Example:

alert http any any -> any any (http_response_line; content:"HTTP/1.0 200 OK"; sid:1;)

4.6.26 http_server_body

With the ht tp_server_body content modifier, it is possible to match specifically and only on the HTTP response
body. The keyword can be used in combination with all previously mentioned content modifiers like distance,
offset, nocase, within, etc.

Note: how much of the response/server body is inspected is controlled in your libhtp configuration section via the
response-body-1limit setting.

Notes

» Using http_server_body is similar to having content matches that come after £ile_data except that it
doesn’t permanently (unless reset) set the detection pointer to the beginning of the server response body. i.e. it
is not a sticky buffer.

* http_server_body will match on gzip decoded data just like £ile_data does.

* Since http_server_body matches on a server response, it can’t be used with the to_server or
from_client flow directives.

¢ Corresponding PCRE modifier: Q

¢ further notes at the £i1le_data section below.

4.6.27 http_host and http_raw_host

With the http_host content modifier, it is possible to match specifically and only the normalized hostname. The
http_raw_host inspects the raw hostname.

The keyword can be used in combination with most of the content modifiers like distance, of fset, within, etc.

The nocase keyword is not allowed anymore. Keep in mind that you need to specify a lowercase pattern.

Notes
e The http_host and http_raw_host buffers are populated from either the URI (if the full URI is present
in the request like in a proxy request) or the HTTP Host header. If both are present, the URI is used.

e The http_host and http_raw_host buffers will NOT include the header name, colon, or leading whites-
pace if populated from the Host header. i.e. they will not include “Host: .

e The http_host and http_raw_host buffers do not include a CRLF (0xOD 0x0A) at the end. If you want to
match the end of the buffer, use a relative ‘isdataat’ or a PCRE (although PCRE will be worse on performance).

e The http_host buffer is normalized to be all lower case.
* The content match that ht t p_host applies to must be all lower case or have the nocase flag set.

* http_raw_host matches the unnormalized buffer so matching will be case-sensitive (unless nocase is set).

70 Chapter 4. Suricata Rules

Suricata User Guide, Release 4.0.0-dev

e If a request contains multiple “Host” headers, the values will be concatenated in the http_host and

http_raw_host buffers, in the order seen from top to bottom, with a comma and space (”,) between
each of them.

Example request:

GET /test.html HTTP/1.1
Host: ABC.com

Accept: */=x

Host: efg.net

http_host buffer contents:

’ abc.com, efg.net

http_raw_host buffer contents:

’ABC.com, efg.net

¢ Corresponding PCRE modifier (http_host): W

* Corresponding PCRE modifier (http_raw_host): Z

4.6.28 file_data

With file_data, the HTTP response body is inspected, just like with http_server_body. The file_data
keyword works a bit differently from the normal content modifiers; when used in a rule, all content matches following
it in the rule are affected (modified) by it.

Example:

’alert http any any -> any any (file_data; content:"abc"; content:"xyz";)

file_data; content: "abc”; pcre: /abc/;

The file_data keyword affects all following content matches, until the pkt_data keyword is encountered or it
reaches the end of the rule. This makes it a useful shortcut for applying many content matches to the HTTP response
body, eliminating the need to modify each content match individually.

As the body of a HTTP response can be very large, it is inspected in smaller chunks.

How much of the response/server body is inspected is controlled in your [libhtp configuration section via the
response-body-1limit setting.

Notes

e If a HTTP body is using gzip or deflate, file_data will match on the decompressed data.

» Negated matching is affected by the chunked inspection. E.g. ‘content:!”<html”;’ could not match on the first
chunk, but would then possibly match on the 2nd. To avoid this, use a depth setting. The depth setting takes the
body size into account. Assuming that the response-body-minimal-inspect—-size is bigger than 1k,
‘content:!”<html”’; depth:1024;” can only match if the pattern ‘<html’ is absent from the first inspected chunk.

e file_data can also be used with SMTP

4.6. HTTP Keywords 71

Suricata User Guide, Release 4.0.0-dev

4.6.29 pcre

For information about the pcre keyword, check the pcre (Perl Compatible Regular Expressions) page.

4.6.30 fast_pattern

For information about the fast_pattern keyword, check the Fast Pattern page.

4.7 Flow Keywords

4.7.1 Flowbits

Flowbits consists of two parts. The first part describes the action it is going to perform, the second part is the name of
the flowbit.

There are multiple packets that belong to one flow. Suricata keeps those flows in memory. For more information see
Flow Settings. Flowbits can make sure an alert will be generated when for example two different packets match. An
alert will only be generated when both packets match. So, when the second packet matches, Suricata has to know if
the first packet was a match too. Flowbits marks the flow if a packet matches so Suricata ‘knows’ it should generate
an alert when the second packet matches as well.

Flowbits have different actions. These are:

flowbits: set, name Will set the condition/'name', if present, in the
—flow.
flowbits: isset, name Can be used in the rule to make sure it generates

—an alert

when the rule matches and the condition is set in_,
—the flow.
flowbits: toggle, name Reverses the present setting. So for example if a
—condition is set,

it will be unset and vice-versa.
flowbits: unset, name Can be used to unset the condition in the flow.
flowbits: isnotset, name Can be used in the rule to make sure it generates_
—an alert

when it matches and the condition is not set in
—the flow.
flowbits: noalert No alert will be generated by this rule.

Example:

72 Chapter 4. Suricata Rules

Suricata User Guide, Release 4.0.0-dev

userlogin; set

Packet 1 Packet 2

userlogin

alert hitp 3HOME | NET any -=> EEXTERMAL_NET any
(msg: “Logged In Wser Saying Blah"; content:"userlogin®;
flowhit:set, userlogin; flowbitnoalert;)

alert hitp FHOME_NET any -= 3EXTERNAL_NET any
(msg: “Logged In User Saying Blah™;flowbit:isset, ¥
userlogin; content;"blah”; ;)

When you take a look at the first rule you will notice it would generate an alert if it would match, if it were not for the
‘flowbits: noalert’ at the end of that rule. The purpose of this rule is to check for a match on ‘userlogin’ and mark that
in the flow. So, there is no need for generating an alert. The second rule has no effect without the first rule. If the first
rule matches, the flowbits sets that specific condition to be present in the flow. Now with the second rule there can be
checked whether or not the previous packet fulfills the first condition. If at that point the second rule matches, an alert
will be generated.

It is possible to use flowbits several times in a rule and combine the different functions.

4.7.2 Flow

The flow keyword can be used to match on direction of the flow, so to/from client or to/from server. It can also match
if the flow is established or not. The flow keyword can also be use to say the signature has to match on stream only
(only_stream) or on packet only (no_stream).

So with the flow keyword you can match on:

to_client Match on packets from server to client.

to_server Match on packets from client to server.

from_client Match on packets from client to server (same as to_server).
from_server Match on packets from server to client (same as to_client).
established Match on established connections.

not_established Match on packets that are not part of an established connection.

stateless Match on packets that are and are not part of an established connection.

4.7. Flow Keywords 73

Suricata User Guide, Release 4.0.0-dev

only_stream Match on packets that have been reassembled by the stream engine.

no_stream Match on packets that have not been reassembled by the stream engine. Will not match packets that have
been reeassembled.

only_frag Match packets that have been reassembled from fragments.
no_frag Match packets that have not been reassembled from fragments.

Multiple flow options can be combined, for example:

flow:to_client, established
flow:to_server, established, only_stream
flow:to_server, not_established, no_frag

The determination of established depends on the protocol:

* For TCP a connection will be established after a three way handshake.

TCP session

Facket x Packet x+1

alert hitp 3HOME_NET any -> $EXTERNAL_MNET any
(msg: "Logged In User Saying Blah"; content:"blah™;
flow:established;)—— —

* For other protocols (for example UDP), the connection will be considered established after seeing traffic from
both sides of the connection.

74 Chapter 4. Suricata Rules

Suricata User Guide, Release 4.0.0-dev

Checks if both sides have had packets

']

Packel x Packel x+1 |

alert hitp SHOME_NET any -= $EXTERNAL_NET any
(msg: “Logged In User Saying Blah"; content;"blan";
flowr:established;) T

4.7.3 Flowint

For information, read the information on the Flowint page.

4.7.4 stream_size

The stream size option matches on traffic according to the registered amount of bytes by the sequence numbers. There
are several modifiers to this keyword:

> greater than

< less than

= equal

I= not equal

>= greater than or equal
<= less than or equal
Format

stream_size:<server|client|both|either>, <modifier>, <number>;

Example of the stream-size keyword in a rule:

4.8 Flowint

Flowint is a precursor to the Global Variables task we will be adding to the engine very soon, which will allow the
capture, storage and comparison of data in a variable. It will be as the name implies Global. So you can compare data

4.8. Flowint 75

Suricata User Guide, Release 4.0.0-dev

from packets in unrelated streams.

Flowint allows storage and mathematical operations using variables. It operates much like flowbits but with the
addition of mathematical capabilities and the fact that an integer can be stored and manipulated, not just a flag set. We
can use this for a number of very useful things, such as counting occurrences, adding or subtracting occurrences, or
doing thresholding within a stream in relation to multiple factors. This will be expanded to a global context very soon,
so users can perform these operations between streams.

The syntax is as follows:

flowint: , ;

Define a var (not required), or check that one is set or not set.
flowint: , , ;

flowint: , < +,-,=,>,<,>=<===, 1=>, ;

Compare or alter a var. Add, subtract, compare greater than or less than, greater than or equal to, and less than or equal
to are available. The item to compare with can be an integer or another variable.

For example, if you want to count how many times a username is seen in a particular stream and alert if it is over 5.

alert tcp any any —-> any any (msg:"Counting Usernames"; content:"jonkman"; \
flowint: usernamecount, +, 1; noalert;)

This will count each occurrence and increment the var usernamecount and not generate an alert for each.

Now say we want to generate an alert if there are more than five hits in the stream.

alert tcp any any —-> any any (msg:"More than Five Usernames!"; content:"jonkman"; \
flowint: usernamecount, +, 1; flowint:usernamecount, >, 5;)

So we’ll get an alert ONLY if usernamecount is over five.

So now let’s say we want to get an alert as above but NOT if there have been more occurrences of that username
logging out. Assuming this particular protocol indicates a log out with “jonkman logout”, let’s try:

alert tcp any any —-> any any (msg:"Username Logged out"; content:"logout jonkman"; \
flowint: usernamecount, -, 1; flowint:usernamecount, >, 5;)

So now we’ll get an alert ONLY if there are more than five active logins for this particular username.

This is a rather simplistic example, but I believe it shows the power of what such a simple function can do for rule
writing. I see a lot of applications in things like login tracking, IRC state machines, malware tracking, and brute force
login detection.

Let’s say we’re tracking a protocol that normally allows five login fails per connection, but we have vulnerability
where an attacker can continue to login after that five attempts and we need to know about it.

alert tcp any any —-> any any (msg:"Start a login count"; content:"login failed"; \
flowint:loginfail, notset; flowint:loginfail, =, 1; noalert;)

So we detect the initial fail if the variable is not yet set and set it to 1 if so. Our first hit.

alert tcp any any —-> any any (msg:"Counting Logins"; content:"login failed"; \
flowint:loginfail, isset; flowint:loginfail, +, 1; noalert;)

We are now incrementing the counter if it’s set.

76 Chapter 4. Suricata Rules

Suricata User Guide, Release 4.0.0-dev

alert tcp any any —-> any any (msg:"More than Five login fails in a Stream"; \
content:"login failed"; flowint:loginfail, isset; flowint:loginfail, >, 5;)

Now we’ll generate an alert if we cross five login fails in the same stream.

But let’s also say we also need alert if there are two successful logins and a failed login after that.

alert tcp any any —> any any (msg:"Counting Good Logins"; content:"login successful";
<\

flowint:loginsuccess, +, 1; noalert;)

Here we’re counting good logins, so now we’ll count good logins relevant to fails:

alert tcp any any —-> any any (msg:"Login fail after two successes"; \
content:"login failed"; flowint:loginsuccess, isset; flowint:loginsuccess, =, 2;

=)

Here are some other general examples:

alert tcp any any —> any any (msg:"Setting a flowint counter"; content:"GET"; \
flowint :myvar, notset; flowint:maxvar,notset; \
flowint:myvar,=,1; flowint: maxvar,=,6;)

alert tcp any any —-> any any (msg:"Adding to flowint counter"; \
content:"Unauthorized"; flowint:myvar,isset; flowint: myvar,+,2;)

alert tcp any any —> any any (msg:"if the flowint counter is 3 create a new counter";
<\
content:"Unauthorized"; flowint:myvar, isset; flowint:myvar,==,3; \
flowint:cntpackets,notset; flowint:cntpackets, =, 0;)

alert tcp any any -> any any (msg:"count the rest without generating alerts"; \
flowint:cntpackets,isset; flowint:cntpackets, +, 1; noalert;)

alert tcp any any —-> any any (msg:"fire this when it reach 6"; \
flowint: cntpackets, isset; \
flowint: maxvar,isset; flowint: cntpackets, ==, maxvar;)

4.9 Xbits

Set, unset, toggle and check for bits stored per host or ip_pair.

Syntax:

xbits:noalert;

xbits:<set|unset|isset|toggle>, <name>,track <ip_src|ip_dst|ip_pair>;

xbits:<set |unset|isset|toggle>, <name>, track <ip_src|ip_dst|ip_pair> \
[,expire <seconds>];

xbits:<set|unset|isset|toggle>, <name>,track <ip_src|ip_dst|ip_pair> \
[,expire <seconds>];

4.9. Xbits 77

Suricata User Guide, Release 4.0.0-dev

4.9.1 Notes

* No difference between using hostbits and xbits with track ip_<src|dst>

e If you set on a client request and use track ip_dst, if you want to match on the server response, you
check it (isset) with track ip_src.

¢ To not alert, use noalert;
* See also:
— https://blog.inliniac.net/2014/12/21/crossing-the-streams-in-suricata/

— http://www.cipherdyne.org/blog/2013/07/crossing-the-streams-in-ids-signature-languages.html

YAML settings

Bits that are stored per host are stored in the Host table. This means that host table settings affect hostsbits and xbits
per host.

Bits that are stored per IP pair are stored in the IPPair table. This means that ippair table settings, especially memcap,
affect xbits per ip_pair.

Threading

Due to subtle timing issues between threads the order of sets and checks can be slightly unpredictible.

Unix Socket

Hostbits can be added, removed and listed through the unix socket.

Add:

suricatasc -c¢ "add-hostbit <ip> <bit name> <expire in seconds>"
suricatasc -c¢ "add-hostbit 1.2.3.4 blacklist 3600"

If an hostbit is added for an existing hostbit, it’s expiry timer is updated.

Remove:

suricatasc -c "remove-hostbit <ip> <bit name>"
suricatasc -c¢ "remove-hostbit 1.2.3.4 blacklist"

List:

suricatasc -c "list-hostbit <ip>"
suricatasc -c "list-hostbit 1.2.3.4"

This results in:

{

"message":
{
"count": 1,
"hostbits":
[{
"expire": 89,
"name": "blacklist"

78 Chapter 4. Suricata Rules

https://blog.inliniac.net/2014/12/21/crossing-the-streams-in-suricata/
http://www.cipherdyne.org/blog/2013/07/crossing-the-streams-in-ids-signature-languages.html

Suricata User Guide, Release 4.0.0-dev

}]
by

"return": "OK"

Examples

Creating a SSH blacklist

Below is an example of rules incoming to a SSH server.

The first 2 rules match on a SSH software version often used in bots. They drop the traffic and create an ‘xbit’” ‘badssh’
for the source ip. It expires in an hour:

drop ssh any any -> SMYSERVER 22 (msg:"DROP libssh incoming"; \

flow:to_server,established; ssh.softwareversion:"libssh"; \

xbits:set, badssh, track ip_src, expire 3600; sid:4000000005;)
drop ssh any any -> $MYSERVER 22 (msg:"DROP PUTTY incoming"; \

flow:to_server,established; ssh.softwareversion:"PUTTY"; \

xbits:set, badssh, track ip_src, expire 3600; sid:4000000007;)

Then the following rule simply drops any incoming traffic to that server that is on that ‘badssh’ list:

drop ssh any any -> S$SMYSERVER 22 (msg:"DROP BLACKLISTED"; \
xbits:isset, badssh, track ip_src; sid:4000000006;)

4.10 File Keywords

Suricata comes with several rule keywords to match on various file properties. They depend on properly configured
File Extraction.

4.10.1 filename

Matches on the file name.

Syntax:

’filename:<string>;

Example:

’filename:"secret";

4.10.2 fileext

Matches on the extension of a file name.

Syntax:

fileext:<string>;

4.10. File Keywords 79

Suricata User Guide, Release 4.0.0-dev

Example:

fileext:"jpg";

4.10.3 filemagic

Matches on the information libmagic returns about a file.

Syntax:

’filemagic:<string>;

Example:

’filemagic:"executable for MS Windows";

Note: as libmagic versions differ between installations, the returned information may also slightly change. See also
#437.

4.10.4 filestore

Stores files to disk if the signature matched.

Syntax:

filestore:<direction>, <scope>;

direction can be:
* request/to_server: store a file in the request / to_server direction
* response/to_client: store a file in the response / to_client direction
* both: store both directions
scope can be:
« file: only store the matching file (for filename,fileext,filemagic matches)
* tx: store all files from the matching HTTP transaction
* ssn/flow: store all files from the TCP session/flow.

If direction and scope are omitted, the direction will be the same as the rule and the scope will be per file.

4.10.5 filemd5

Match file MD5 against list of MDS5 checksums.

Syntax:

filemd5:[!] filename;

The filename is expanded to include the rule dir. In the default case it will become /etc/suricata/rules/filename. Use
the exclamation mark to get a negated match. This allows for white listing.

Examples:

80 Chapter 4. Suricata Rules

Suricata User Guide, Release 4.0.0-dev

filemd5:md5-blacklist;
filemd5: !md5-whitelist;

File format

The file format is simple. It’s a text file with a single md5 per line, at the start of the line, in hex notation. If there is
extra info on the line it is ignored.

Output from mdSsum is fine:

2£8d0355£0032¢c3e6311c6408d7c2dc2 wutil-path.c
b9cf5cf347a70e02fde975fc4ell17760 util-pidfile.c
02aaabc3f4dbae65£5889%eeb8f2bbb8d util-pool.c
dd5fclee7f2£f96b5f12d1a854007a818 wutil-print.c

Just MD5’s are good as well:

2£8d0355f0032c3e6311c6408d7c2dc2
b9cf5cf347a70e02£fde975fc4ell7760
02aaabc3fddbae65£5889eeb8f2bbb8d
dd5fclee7f2£96b5f12d1a854007a818

Memory requirements
Each MD5 uses 16 bytes of memory. 20 Million MD5’s use about 310 MiB of memory.
See also: http://blog.inliniac.net/2012/06/09/suricata-mdS-blacklisting/

4.10.6 filesize

Match on the size of the file as it is being transferred.

Syntax:

filesize:<value>;

Examples:

filesize:100; # exactly 100 bytes
filesize:100<>200; # greater than 100 and smaller than 200
filesize:>100; # greater than 100
filesize:<100; # smaller than 100

Note: For files that are not completely tracked because of packet loss or stream.depth being reached on the “greater
than” is checked. This is because Suricata can know a file is bigger than a value (it has seen some of it already), but it
can’t know if the final size would have been within a range, an exact value or smaller than a value.

4.11 Rule Thresholding

Thresholding can be configured per rule and also globally, see Global-Thresholds.

Note: mixing rule and global thresholds is not supported in 1.3 and before. See bug #425. For the state of the support
in 1.4 see Global thresholds vs rule thresholds

4.11. Rule Thresholding 81

http://blog.inliniac.net/2012/06/09/suricata-md5-blacklisting/

Suricata User Guide, Release 4.0.0-dev

4.11.1 threshold

The threshold keyword can be used to control the rule’s alert frequency. It has 3 modes: threshold, limit and both.

Syntax:

threshold: type <threshold|limit|both>, track <by_src|by_dst>, count <N>, seconds <T>

type “threshold”

This type can be used to set a minimum threshold for a rule before it generates alerts. A threshold setting of N means
on the Nth time the rule matches an alert is generated.

Example:

alert tcp !$HOME_NET any —-> S$HOME_NET 25 (msg:"ET POLICY Inbound Frequent Emails —_
—Possible Spambot Inbound"; \
flow:established; content:"mail from|3a|"; nocase;

o \
threshold: type threshold, track by_src, count 10, seconds 60; o
—

\

reference:url,doc.emergingthreats.net/2002087; classtype:misc-activity; sid:2002087;
—rev:10;)

This signature only generates an alert if we get 10 inbound emails or more from the same server in a time period of
one minute.

If a signature sets a flowbit, flowint, etc. those actions are still performed for each of the matches.

Rule actions drop (IPS mode) and reject are applied to each packet (not only the one that meets the
threshold condition).

type “limit”

This type can be used to make sure you’re not getting flooded with alerts. If set to limit N, it alerts at most N times.

Example:

alert http $HOME_NET any -> any S$HTTP_PORTS (msg:"ET USER_AGENTS Internet Explorer 6
—1in use - Significant Security Risk"; \
flow:to_server,established; content:"|0d Oa|User-Agent|3a| Mozilla/4.0_

— (compatible|3b| MSIE 6.0|3b|"; \
threshold: type limit, track by_src, seconds 180, count 1; .
o \

reference:url,doc.emergingthreats.net/2010706; classtype:policy-violation;
—s1d:2010706; rev:7;)

In this example at most 1 alert is generated per host within a period of 3 minutes if MSIE 6.0 is detected.
If a signature sets a flowbit, flowint, etc. those actions are still performed for each of the matches.

Rule actions drop (IPS mode) and reject are applied to each packet (not only the one that meets the limit
condition).

82 Chapter 4. Suricata Rules

Suricata User Guide, Release 4.0.0-dev

type “both”

This type is a combination of the “threshold” and “limit” types. It applies both thresholding and limiting.

Example:

alert tcp $HOME_NET 5060 -> $EXTERNAL_NET any (msg:"ET VOIP Multiple Unauthorized SIP
—Responses TCP"; \

flow:established, from_server; content:"SIP/2.0 401 Unauthorized"; depth:24;
- \

threshold: type both, track by_src, count 5, seconds 360; o
— \

reference:url,doc.emergingthreats.net/2003194; classtype:attempted-dos; sid:2003194;
—rev:6;)

This alert will only generate an alert if within 6 minutes there have been 5 or more “SIP/2.0 401 Unauthorized”
responses, and it will alert only once in that 6 minutes.

If a signature sets a flowbit, flowint, etc. those actions are still performed for each of the matches.

Rule actions drop (IPS mode) and reject are applied to each packet.

4.11.2 detection_filter

The detection_filter keyword can be used to alert on every match after a threshold has been reached. It differs from
the threshold with type threshold in that it generates an alert for each rule match after the initial threshold has been
reached, where the latter will reset it’s internal counter and alert again when the threshold has been reached again.

Syntax:

detection_filter: track <by_src|by_dst>, count <N>, seconds <T>

Example:

alert http $EXTERNAL_NET any -> SHOME_NET any \

(msg:"ET WEB_SERVER WebResource.axd access without t (time) parameter - possible
—ASP padding-oracle exploit"; \

flow:established, to_server; content:"GET"; http_method; content:"WebResource.axd

—"; http_uri; nocase; \

content:!"&t="; http_uri; nocase; content:!"&|3b|t="; http_uri; nocase; o
o \

detection_filter:track by_src,count 15,seconds 2; .
. \

reference:url,netifera.com/research/; reference:url,www.microsoft.com/technet/
—security/advisory/2416728.mspx; \
classtype:web-application-attack; sid:2011807; rev:5;)

Alerts each time after 15 or more matches have occurred within 2 seconds.
If a signature sets a flowbit, flowint, etc. those actions are still performed for each of the matches.

Rule actions drop (IPS mode) and reject are applied to each packet that generate an alert

4.12 DNS Keywords

There are some more content modifiers (If you are unfamiliar with content modifiers, please visit the page Payload
Keywords These ones make sure the signature checks a specific part of the network-traffic.

4.12. DNS Keywords 83

Suricata User Guide, Release 4.0.0-dev

4.12.1 dns_query
With dns_query the DNS request queries are inspected. The dns_query keyword works a bit different from the normal
content modifiers. When used in a rule all contents following it are affected by it. Example:

alert dns any any -> any any (msg:”Test dns_query option”; dns_query; content:”’google”’; nocase; sid:1;)

dns_query; content: "abc";pcre: /abc/;

The dns_query keyword affects all following contents, until pkt_data is used or it reaches the end of the rule.

Normalized Buffer

Buffer contains literal domain name

* <length> values (as seen in a raw DNS request) are literal .” characters

* no leading <length> value

* No terminating NULL (0x00) byte (use a negated relative i sdataat to match the end)
Example DNS request for “mail.google.com” (for readability, hex values are encoded between pipes):

DNS query on the wire (snippet):

’\04\mail\O6\qoogle\03\com\00\

dns_query buffer:

’mail.google.com

4.13 SSL/TLS Keywords

Suricata comes with several rule keywords to match on various properties of TLS/SSL handshake. Matches are string
inclusion matches.

4.13.1 tls_cert_subject

Match TLS/SSL certificate Subject field.

Examples:

tls_cert_subject; content:"CN=x.googleusercontent.com"; isdataat:!1l,relative;
tls_cert_subject; content:"google.com"; nocase; pcre:"/google.com$/";

tls_cert_subject is a ‘Sticky buffer’.

tls_cert_subject canbe used as fast_pattern.

84 Chapter 4. Suricata Rules

Suricata User Guide, Release 4.0.0-dev

4.13.2 tls_cert_issuer

Match TLS/SSL certificate Issuer field.

Examples:

tls_cert_issuer; content:"WoSign"; nocase; isdataat:!1l,relative;
tls_cert_issuer; content:"StartCom"; nocase; pcre:"/StartCom$/";

tls_cert_issuer isa ‘Sticky buffer’.
tls_cert_issuer canbeused as fast_pattern.

4.13.3 tls_cert_serial

Match on the serial number in a certificate.

Example:

alert tls any any —-> any any (msg:"match cert serial"; \

tls_cert_serial; content:"5C:19:B7:B1:32:3B:1C:A1"; si1d:200012;)

tls_cert_serial isa ‘Sticky buffer’.
tls_cert_serial canbeused as fast_pattern.

4.13.4 tls_sni

Match TLS/SSL Server Name Indication field.

Examples:

tls_sni; content:"oisf.net"; nocase; isdataat:!1,relative;
tls_sni; content:"oisf.net"; nocase; pcre:"/oisf.net$/";

t1ls_sni is a ‘Sticky buffer’.
tls_sni canbeused as fast_pattern.

4.13.5 tls_cert_notbefore

Match on the NotBefore field in a certificate.

Example:

alert tls any any —> any any (msg:"match cert NotBefore"; \
tls_cert_notbefore:1998-05-01<>2008-05-01; sid:200005;)

4.13.6 tls_cert_notafter

Match on the NotAfter field in a certificate.

Example:

4.13. SSL/TLS Keywords

85

Suricata User Guide, Release 4.0.0-dev

alert tls any any —> any any (msg:"match cert NotAfter"; \
tls_cert_notafter:>2015; sid:200006;)

4.13.7 tls_cert_expired

Match returns true if certificate is expired. It evaluates the validity date from the

Usage:

certificate.

tls_cert_expired;

4.13.8 tls_cert_valid

Match returns true if certificate is not expired. It only evaluates the validity date
It is the opposite of t 1s_cert_expired.

Usage:

. It does not do cert chain validation.

tls_cert_valid;

4.13.9 tls.version

Match on negotiated TLS/SSL version.

Example values: “1.0”, “1.17, “1.2”

4.13.10 tls.subject

Match TLS/SSL certificate Subject field.

example:

tls.subject:"CN=x.googleusercontent.com"

Case sensitve, can’t use ‘nocase’.

Legacy keyword. t1s_cert_subject is the replacement.

4.13.11 tls.issuerdn

match TLS/SSL certificate IssuerDN field

example:

tls.issuerdn: !"CN=Google-Internet-Authority"

Case sensitve, can’t use ‘nocase’.

Legacy keyword. t1s_cert_issuer is the replacement.

86

Chapter 4. Suricata Rules

Suricata User Guide, Release 4.0.0-dev

4.13.12 tls.fingerprint

match TLS/SSL certificate SHA1 fingerprint

example:

tls.fingerprint:!"£3:40:21:48:70:2c:31:bc:b5:aa:22:ad:63:d6:bc:2e:b3:46:e2:5a"

Case sensitive, can’t use ‘nocase’.

The tls.fingerprint buffer is lower case so you must use lower case letters for this to match.

4.13.13 tls.store

store TLS/SSL certificate on disk

4.13.14 ssl_state

The ssl_state keyword matches the state of the SSL connection. The possible states are client_hello,
server_hello, client_keyx, server_keyx and unknown. You can specify several states with | (OR)
to check for any of the specified states.

Negation support is not available yet, see https://redmine.openinfosecfoundation.org/issues/1231

4.14 Modbus Keyword

The modbus keyword can be used for matching on various properties of Modbus requests.
There are two ways of using this keyword:
* matching on functions properties with the setting “function”;
» matching on directly on data access with the setting “access”.
With the setting function, you can match on:
* an action based on a function code field and a sub-function code when applicable;
* one of three categories of Modbus functions;
* public functions that are publicly defined (setting “public”)
* user-defined functions (setting “user”)
* reserved functions that are dedicated to proprietary extensions of Modbus (keyword “reserved”)
* one of the two sub-groups of public functions:
— assigned functions whose definition is already given in the Modbus specification (keyword “assigned”);
— unassigned functions, which are reserved for future use (keyword “unassigned”).

Syntax:

modbus: function <value>
modbus: function <value>, subfunction <value>
modbus: function [!] <assigned | unassigned | public | user | reserved | all>

4.14. Modbus Keyword 87

https://redmine.openinfosecfoundation.org/issues/1231

Suricata User Guide, Release 4.0.0-dev

Sign ‘!’ is negation

Examples:

4=

modbus: function 21 Write File record function
modbus: function 4, subfunction 4 # Force Listen Only Mode (Diagnostics) function

modbus: function assigned # defined by Modbus Application Protocol,,
—Specification V1.1b3

modbus: function public # validated by the Modbus.org community

modbus: function user # internal use and not supported by the
—specification

modbus: function reserved # used by some companies for legacy products and
—not available for public use

modbus: function !reserved # every function but reserved function

With the access setting, you can match on:
* atype of data access (read or write);
* one of primary tables access (Discretes Input, Coils, Input Registers and Holding Registers);
 arange of addresses access;

¢ a written value.

Syntax:

modbus: access <read | write>

modbus: access <read | write> <discretes | coils | input | holding>

modbus: access <read | write> <discretes | coils | input | holding>, address <value>
modbus: access <read | write> <discretes | coils | input | holding>, address <value>,

—value <value>

With _<value>_ setting matches on the address or value as it is being accessed or written as follows:

address 100 # exactly address 100

address 100<>200 # greater than address 100 and smaller than address 200

address >100 # greater than address 100

address <100 # smaller than address 100

Examples:

modbus: access read # Read access

modbus: access write # Write access

modbus: access read input # Read access to Discretes,
—Input table

modbus: access write coils # Write access to Coils table
modbus: access read discretes, address <100 # Read access at address,,

—smaller than 100 of Discretes Input table
modbus: access write holding, address 500, value >200 # Write value greather than_
—200 at address 500 of Holding Registers table

(cf. http://www.modbus.org/docs/Modbus_Application_Protocol_V1_1b3.pdf)

Note: Address of read and write are starting at 1. So if your system is using a start at 0, you need to add 1 the address
values.

Note: According to MODBUS Messaging on TCP/IP Implementation Guide V1.0b, it is recommended to keep the
TCP connection opened with a remote device and not to open and close it for each MODBUS/TCP transaction. In that
case, it is important to set the depth of the stream reassembling as unlimited (stream.reassembly.depth: 0)

(cf. http://www.modbus.org/docs/Modbus_Messaging_Implementation_Guide_V1_0b.pdf)

88 Chapter 4. Suricata Rules

http://www.modbus.org/docs/Modbus_Application_Protocol_V1_1b3.pdf
http://www.modbus.org/docs/Modbus_Messaging_Implementation_Guide_V1_0b.pdf

Suricata User Guide, Release 4.0.0-dev

Paper and presentation (in french) on Modbus support are available : http://www.ssi.gouv.fr/agence/publication/
detection-dintrusion-dans-les-systemes-industriels-suricata-et-le-cas-modbus/

4.15 DNP3 Keywords

The DNP3 keywords can be used to match on fields in decoded DNP3 messages. The keywords are based on Snort’s
DNP3 keywords and aim to be 100% compatible.

4.15.1 dnp3_func

This keyword will match on the application function code found in DNP3 request and responses. It can be specified
as the integer value or the symbolic name of the function code.

Syntax

dnp3_func:<value>;

Where value is one of:
¢ An integer value between 0 and 255 inclusive.

¢ Function code name:

confirm

— read

— write

— select

— operate

— direct_operate

— direct_operate_nr
— immed_freeze

— immed_freeze nr
— freeze_clear

— freeze_clear_nr
— freeze_at_time

— freeze_at_time_nr
— cold_restart

— warm_restart

— initialize data

— initialize_appl

— start_appl

— stop_appl

4.15. DNP3 Keywords 89

http://www.ssi.gouv.fr/agence/publication/detection-dintrusion-dans-les-systemes-industriels-suricata-et-le-cas-modbus/
http://www.ssi.gouv.fr/agence/publication/detection-dintrusion-dans-les-systemes-industriels-suricata-et-le-cas-modbus/

Suricata User Guide, Release 4.0.0-dev

save_config
enable_unsolicited
disable_unsolicited
assign_class
delay_measure
record_current_time
open_{file

close_file
delete_file
get_file_info
authenticate_file
abort_file
activate_config
authenticate_req
authenticate_err
response
unsolicited_response

authenticate_resp

4.15.2 dnp3_ind

This keyword matches on the DNP3 internal indicator flags in the response application header.

Syntax

dnp3_ind:<flag>{,<flag>...

}

Where flag is the name of the internal indicator:

¢ all_stations

e class_1_events
e class_2_events
e class_3_events
¢ need_time

* local_control
¢ device_trouble

e device_restart

* no_func_code_support

* object_unknown

90

Chapter 4. Suricata Rules

Suricata User Guide, Release 4.0.0-dev

* parameter_error

* event_buffer_overflow
* already_executing

* config_corrupt

e reserved_2

e reserved_1

This keyword will match of any of the flags listed are set. To match on multiple flags (AND type match), use dnp3_ind
for each flag that must be set.

Examples

’dan_ind:all_stations;

’dnp3_ind:class_l_events,class_2_events;

4.15.3 dnp3_obj

This keyword matches on the DNP3 application data objects.

Syntax

dnp3_ob3j:<group>, <variation>

Where <group> and <variation> are integer values between 0 and 255 inclusive.

4.15.4 dnp3_data

This keyword will cause the following content options to match on the re-assembled application buffer. The reassem-
bled application buffer is a DNP3 fragment with CRCs removed (which occur every 16 bytes), and will be the complete
fragment, possibly reassembled from multiple DNP3 link layer frames.

Syntax

’dnpS_data;

Example

’dnp3_data; content: |c3 06];

4.15. DNP3 Keywords 91

Suricata User Guide, Release 4.0.0-dev

4.16 ENIP/CIP Keywords

The enip_command and cip_service keywords can be used for matching on various properties of ENIP requests.
There are three ways of using this keyword:

* matching on ENIP command with the setting “enip_command”;

» matching on CIP Service with the setting “cip_service”.

* matching both the ENIP command and the CIP Service with “enip_command” and “cip_service” together
For the ENIP command, we are matching against the command field found in the ENIP encapsulation.

For the CIP Service, we use a maximum of 3 comma seperated values representing the Service, Class and Attribute.
These values are described in the CIP specification. CIP Classes are associated with their Service, and CIP Attributes
are associated with their Service. If you only need to match up until the Service, then only provide the Service value.
If you want to match to the CIP Attribute, then you must provide all 3 values.

Syntax:

enip_command:<value>
cip_service:<value (s) >
enip_command:<value>, cip_service:<value(s)>

Examples:

enip_command: 99

cip_service:75
cip_service:16,246,6
enip_command:111, cip_service:5

(cf. http://read.pudn.com/downloads 166/ebook/763211/EIP-CIP-V1-1.0.pdf)

Information on the protocol can be found here: http:/literature.rockwellautomation.com/idc/groups/literature/
documents/wp/enet-wp001_-en-p.pdf

4.17 Generic App Layer Keywords

4.17.1 app-layer-protocol

Match on the detected app-layer protocol.

Syntax:

app-layer-protocol: [!]<protocol>;

Examples:

app-layer—-protocol:ssh;
app-layer-protocol:!tls;
app-layer-protocol:failed;

A special value ‘failed’ can be used for matching on flows in which protocol detection failed. This can happen if
Suricata doesn’t know the protocol or when certain ‘bail out’ conditions happen.

92 Chapter 4. Suricata Rules

http://read.pudn.com/downloads166/ebook/763211/EIP-CIP-V1-1.0.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/wp/enet-wp001_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/wp/enet-wp001_-en-p.pdf

Suricata User Guide, Release 4.0.0-dev

Bail out conditions

Protocol detection gives up in several cases:
* both sides are inspected and no match was found
* side A detection failed, side B has no traffic at all (e.g. FTP data channel)
¢ side A detection failed, side B has so little data detection is inconclusive

In these last 2 cases the app-layer—event:applayer_proto_detection_skipped is set.

4.17.2 app-layer-event

Match on events generated by the App Layer Parsers and the protocol detection engine.

Syntax:

app-layer—-event:<event name>;

Examples:

app-layer-event:applayer_mismatch_protocol_both_directions;
app-layer-event:http.gzip_decompression_failed;

Protocol Detection

applayer_mismatch_protocol_both_directions

The toserver and toclient directions have different protocols. For example a client talking HTTP to a SSH server.

applayer_wrong_direction_first_data
Some protocol implementations in Suricata have a requirement with regards to the first data direction. The HTTP

parser is an example of this.

https://redmine.openinfosecfoundation.org/issues/993

applayer_detect_protocol_only_one_direction

Protocol detection only succeeded in one direction. For FTP and SMTP this is expected.

applayer_proto_detection_skipped

Protocol detection was skipped because of Bail out conditions.

4.18 Lua Scripting

Syntax:

4.18. Lua Scripting 93

https://redmine.openinfosecfoundation.org/issues/993

Suricata User Guide, Release 4.0.0-dev

lua:[!]<scriptfilename>;

The script filename will be appended to your default rules location.

The script has 2 parts, an init function and a match function. First, the init.

4.18.1 Init function

function init (args)
local needs = {}
needs["http.request_line"] = tostring(true)
return needs

end

The init function registers the buffer(s) that need inspection. Currently the following are available:
 packet — entire packet, including headers
* payload — packet payload (not stream)

* http.uri

* http.uri.raw

* http.request_line

* http.request_headers

* http.request_headers.raw
* http.request_cookie

* http.request_user_agent
* http.request_body

* http.response_headers

* http.response_headers.raw
* http.response_body

* http.response_cookie

All the HTTP buffers have a limitation: only one can be inspected by a script at a time.

4.18.2 Match function

function match (args)
a = tostring(args|["http.request_line"])
if #a > 0 then
if a:find(""POST%s+/.*%.php%$s+HTTP/1.0$") then
return 1
end
end

return 0
end

94 Chapter 4. Suricata Rules

Suricata User Guide, Release 4.0.0-dev

The script can return 1 or 0. It should return 1 if the condition(s) it checks for match, O if not.

Entire script:

function init (args)

local needs = {}
needs["http.request_line"] = tostring(true)
return needs

end

function match (args)
a = tostring(args|["http.request_line"])
if #a > 0 then
if a:find(""POST%s+/.*%.php%$s+HTTP/1.0$") then
return 1
end
end

return 0
end

return 0

4.19 Normalized Buffers

4.19.1 HTTP-uri normalization

The uri has two appearances in Suricata: the raw_uri and the normalized uri. The space for example can be indicated
with the heximal notation %20. To convert this notation in a space, means normalizing it. It is possible though to
match specific on the characters %20 in a uri. This means matching on the raw_uri. The raw_uri and the normalized
uri are separate buffers. So, the raw_uri inspects the raw_uri buffer and can not inspect the normalized buffer.

A packet consists of raw data. HTTP and reassembly make a copy of those kinds of packets data. They erase anomalous
content, combine packets etcetera. What remains is a called the ‘normalized buffer’.

Example:

4.19. Normalized Buffers 95

Suricata User Guide, Release 4.0.0-dev

GET /somemap/f/fothermap/ HTTF/1.0

normalization

GET /somemap/othermap/ HTTP/.0

matching

content: “/somemap/othermap/";

Because the data is being normalized, it is not what it used to be; it is an interpretation. Normalized buffers are: all
HTTP-keywords, reassembled streams, TLS-, SSL-, SSH-, FTP- and dcerpc-buffers.

4.20 Differences From Snort

4.20.1 Overview

This document is intended to highlight the major differences between Suricata and Snort that apply to rules and rule
writing.

Where not specified, the statements below apply to Suricata. In general, references to Snort refer to the version 2.9
branch.

4.20.2 Contents

Contents
* Differences From Snort
— Overview

Contents

Automatic Protocol Detection

urilen Keyword

— http_header Buffer

http_uri Buffer

96 Chapter 4. Suricata Rules

Suricata User Guide, Release 4.0.0-dev

— http_cookie Buffer

— New HTTP keywords

— byte_extract Keyword

— isdataat Keyword

— Relative PCRE

— tls#* Keywords

— dns_query Keyword

— IP Reputation and iprep Keyword

— Flowbits

— flowbits:noalert;

— Negated Content Match Special Case

— File Extraction

— Lua Scripting

— Fast Pattern

— Don’t Cross The Streams

— Alerts

— Buffer Reference Chart

4.20.3 Automatic Protocol Detection

* Suricata does automatic protocol detection of the following application layer protocols:

dcerpc

dnp3

dns

http

imap (detection only by default; no parsing)

ftp

modbus (disabled by default; minimalist probe parser; can lead to false positives)
msn (detection only by default; no parsing)

smb

smb?2 (disabled internally inside the engine)

smtp

ssh

tls (SSLv2, SSLv3, TLSvl, TLSv1.1 and TLSv1.2)

* In Suricata, protocol detection is port agnostic (in most cases). In Snort, in order for the http_inspect and
other preprocessors to be applied to traffic, it has to be over a configured port.

4.20. Differences From Snort 97

Suricata User Guide, Release 4.0.0-dev

— Some configurations for app-layer in the Suricata yaml can/do by default specify specific destination ports
(e.g. DNS)

— You can look on ‘any’ port without worrying about the performance impact that you would have to
be concerned about with Snort.

o If the traffic is detected as HTTP by Suricata, the ht t p_» buffers are populated and can be used, regardless of
port(s) specified in the rule.

* You don’t have to check for the http protocol (i.e. alert http ...)tousethe http_* buffers although it
is recommended.

* If you are trying to detect legitimate (supported) application layer protocol traffic and don’t want to look on spe-
cific port(s), the rule should be written as alert <protocol> ... with any in place of the usual protocol
port(s). For example, when you want to detect HTTP traffic and don’t want to limit detection to a particular port
or list of ports, the rules should be written as alert http ... with any in place of SHTTP_PORTS.

— You can also use app-layer-protocol:<protocol>; inside the rule instead.

So, instead of this Snort rule:

’alert tcp SHOME_NET any —-> S$EXTERNAL_NET S$HTTP_PORTS

Do this for Suricata:

’alert http $HOME_NET -> S$EXTERNAL_NET any ...

Or:

’alert tcp $HOME_NET any —> SEXTERNAL_NET any (app-layer-protocol:http;

4.20.4 urilen Keyword

* Ranges given in the urilen keyword are inclusive for Snort but not inclusive for Suricata.
Example: urilen:2<>10

— Snort interprets this as, “the URI length must be greater than or equal to 2, and less than or equal to
10”.

— Suricata interprets this as “the URI length must be greater than 2 and less than 10”.

— There is a request to have Suricata behave like Snort in future versions — https://redmine.
openinfosecfoundation.org/issues/1416

% Currently on hold
e By default, with Suricata, urilen applies to the normalized buffer
— Use , raw for raw buffer
- eg urilen:>20, raw;
* By default, with Snort, urilen applies to the raw buffer
— Use , norm for normalized buffer

- eg urilen:>20,norm;

98 Chapter 4. Suricata Rules

https://redmine.openinfosecfoundation.org/issues/1416
https://redmine.openinfosecfoundation.org/issues/1416

Suricata User Guide, Release 4.0.0-dev

4.20.5 http_uri Buffer

* In Snort, the http_uri buffer normalizes ‘+’ characters (0x2B) to spaces (0x20).

— Suricata can do this as well but you have to explicitly set query-plusspace-decode: vyes inthe
libhtp section of Suricata’s yaml file.

* https://redmine.openinfosecfoundation.org/issues/1035

* https://github.com/inliniac/suricata/pull/620

4.20.6 http_header Buffer

¢ In Snort, the ht tp_header buffer includes the CRLF CRLF (0x0D 0x0A 0x0D 0x0A) that separates the end
of the last HTTP header from the beginning of the HTTP body. Suricata includes a CRLF after the last header in
the http_header buffer but not an extra one like Snort does. If you want to match the end of the buffer, use
either the http_raw_header buffer, a relative isdataat (e.g. isdataat:!1, relative)or a PCRE
(although PCRE will be worse on performance).

e Suricata will include CRLF CRLF at the end of the http_raw_header buffer like Snort does.

* Snort will include a leading CRLF in the http_header buffer of server responses (but not client requests).
Suricata does not have the leading CRLF in the ht tp_header buffer of the server response or client request.

¢ Inthe http_header buffer, Suricata will normalize HTTP header lines such that there is a single space (0x20)
after the colon (“:”) that separates the header name from the header value; this single space replaces zero or more
whitespace characters (including tabs) that may be present in the raw HTTP header line immediately after the
colon. If the extra whitespace (or lack thereof) is important for matching, use the http_raw_header buffer
instead of the ht tp_header buffer.

 Snort will also normalize superfluous whitespace between the header name and header value like Suricata does
but only if there is at least one space character (0x20 only so not 0x90) immediately after the colon. This means
that, unlike Suricata, if there is no space (or if there is a tab) immediately after the colon before the header value,
the content of the header line will remain unchanged in the ht tp_header buffer.

* When there are duplicate HTTP headers (referring to the header name only, not the value), the normalized buffer
(http_header) will concatenate the values in the order seen (from top to bottom), with a comma and space
(”,) between each of them. If this hinders detection, use the ht tp_raw_header buffer instead.

Example request:

GET /test.html HTTP/1.1
Content-Length: 44
Accept: /%
Content-Length: 55

The Content-Length header line becomes this in the ht tp_header buffer:

Content-Length: 44, 55

* The HTTP ‘Cookie’ and ‘Set-Cookie’ headers are NOT included in the ht tp_header buffer; instead they are
extracted and put into their own buffer — ht tp_cookie. See the http_cookie Buffer section.

e The HTTP ‘Cookie’ and ‘Set-Cookie’ headers ARE included in the ht tp_raw_header buffer so if you are
trying to match on something like particular header ordering involving (or not involving) the HTTP Cookie
headers, use the http_raw_header buffer.

4.20. Differences From Snort 99

https://redmine.openinfosecfoundation.org/issues/1035
https://github.com/inliniac/suricata/pull/620

Suricata User Guide, Release 4.0.0-dev

* If ‘enable_cookie’ is set for Snort, the HTTP Cookie header names and trailing CRLF (i.e. “Cookie: \r\n”” and

“Set-Cooke \r\n”) are kept in the http_header buffer. This is not the case for Suricata which removes the
entire “Cookie” or “Set-Cookie” line from the ht t p_header buffer.

¢ Other HTTP headers that have their own buffer (http_user_agent, http_host) are not removed from

the ht t p_header buffer like the Cookie headers are.

* When inspecting server responses and £ile_data is used, content matches in ht tp_ * buffers should come

before file_data unless you use pkt_data to reset the cursor before matching in ht tp_ « buffers. Snort
will not complain if you use http_ « buffers after file_data is set.

4.20.7 http_cookie Buffer

The http_cookie buffer will NOT include the header name, colon, or leading whitespace. i.e. it will not
include “Cookie: ” or “Set-Cookie: .

The http_cookie buffer does not include a CRLF (0x0D 0x0A) at the end. If you want to match the end of
the buffer, use a relative isdataat or a PCRE (although PCRE will be worse on performance).

There is no http_raw_cookie buffer in Suricata. Use http_raw_header instead.

You do not have to configure anything special to use the ‘http_cookie’ buffer in Suricata. This is different from
Snort where you have to set enable_cookieinthe http_inspect_server preprocessor config in order
to have the ht tp_cookie buffer treated separate from the ht tp_header buffer.

If Snort has ‘enable_cookie’ set and multiple “Cookie” or “Set-Cookie” headers are seen, it will concatenate
them together (with no separator between them) in the order seen from top to bottom.

If a request contains multiple “Cookie” or “Set-Cookie” headers, the values will be concatenated in the Suricata

http_cookie buffer, in the order seen from top to bottom, with a comma and space (”,) between each of
them.

Example request:

GET /test.html HTTP/1.1
Cookie: monster

Accept: */x

Cookie: elmo

Suricata ht tp_cookie buffer contents:

’monster, elmo

Snort http_cookie buffer contents:

’monsterelmo

* Corresponding PCRE modifier: C (same as Snort)

4.20.8 New HTTP keywords

Suricata supports several HTTP keywords that Snort doesn’t have.

Examples are http_user_agent, http_host and http_content_type.
See HTTP Keywords for all HTTP keywords.

100

Chapter 4. Suricata Rules

Suricata User Guide, Release 4.0.0-dev

4.20.9 byte_extract Keyword
* Suricata supports byte_extract from http_+ buffers, including http_header which does not always
work as expected in Snort.

¢ In Suricata, variables extracted using byte_extract must be used in the same buffer, otherwise they will
have the value “0” (zero). Snort does allow cross-buffer byte extraction and usage.

* Be sure to always positively and negatively test Suricata rules that use byte_extract and byte_test to
verify that they work as expected.

4.20.10 isdataat Keyword

* The rawbytes keyword is supported in the Suricata syntax but doesn’t actually do anything.

* Absolute i sdataat checks will succeed if the offset used is less than the size of the inspection buffer. This is
true for Suricata and Snort.

e For relative i sdataat checks, there is a 1 byte difference in the way Snort and Suricata do the comparisons.

— Suricata will succeed if the relative offset is less than or equal to the size of the inspection buffer. This is
different from absolute i sdataat checks.

— Snort will succeed if the relative offset is less than the size of the inspection buffer, just like absolute
isdataat checks.

— Example - to check that there is no data in the inspection buffer after the last content match:
% Snort: isdataat:!0, relative;
* Suricata: isdataat:!1, relative;

* With Snort, the “inspection buffer” used when checking an i sdataat keyword is generally the packet/segment
with some exceptions:

— With PAF enabled the PDU is examined instead of the packet/segment. When file_data or
base64_data has been set, it is those buffers (unless rawbytes is set).

— With some preprocessors - modbus, gtp, sip, dce2, and dnp3 - the buffer can be particular portions of those
protocols (unless rawbytes is set).

— With some preprocessors - rpc_decode, ftp_telnet, smtp, and dnp3 - the buffer can be particular decoded
portions of those protocols (unless rawbytes is set).

e With Suricata, the “inspection buffer” used when checking an absolute isdataat keyword is the
packet/segment if looking at a packet (e.g. alert tcp-pkt...) or the reassembled stream segments.

* In Suricata, a relative 1 sdataat keyword will apply to the buffer of the previous content match. So if the
previous content match is a ht t p_* buffer, the relative 1 sdataat applies to that buffer, starting from the end
of the previous content match in that buffer. Snort does not behave like this!

 For example, this Suricata rule looks for the string ”.exe” at the end of the URI; to do the same thing in the
normalized URI buffer in Snort you would have to use a PCRE — pcre: " /\x2Eexe$/U";

alert http $HOME_NET any —> SEXTERNAL_NET any (msg:".EXE File Download Request"; |
—~flow:established,to_server; content:"GET"; http_method; content:".exe"; http_
—uri; isdataat:!1l,relative; priority:3; sid:18332111;)

« If you are unclear about behavior in a particular instance, you are encouraged to positively and negatively test
your rules that use an isdataat keyword.

4.20. Differences From Snort 101

Suricata User Guide, Release 4.0.0-dev

4.20.11 Relative PCRE

You can do relative PCRE matches in normalized/special buffers with Suricata. Example:

content:".php?sign="; http_uri; pcre:"/"[a-zA-720-9] $/UR";

With Snort you can’t combine the “relative” PCRE option (‘R’) with other buffer options like normalized URI
(‘U’) — you get a syntax error.

4.20.12 t1sx Keywords

In addition to TLS protocol identification, Suricata supports the storing of certificates to disk, verifying the valid-
ity dates on certificates, matching against the calculated SHA1 fingerprint of certificates, and matching on certain
TLS/SSL certificate fields including the following:

Negotiated TLS/SSL version.
Certificate Subject field.
Certificate Issuer field.
Certificate SNI Field

For details see SSL/TLS Keywords.

4.20.13 dns_query Keyword

Sets the detection pointer to the DNS query.

Works like file_data does (“sticky buffer”) but for a DNS request query.

Use pkt_data to reset the detection pointer to the beginning of the packet payload.
See DNS Keywords for details.

4.20.14 IP Reputation and iprep Keyword

Snort has the “reputation” preprocessor that can be used to define whitelist and blacklist files of IPs which are
used generate GID 136 alerts as well as block/drop/pass traffic from listed IPs depending on how it is configured.

Suricata also has the concept of files with IPs in them but provides the ability to assign them:
— Categories
— Reputation score
Suricata rules can leverage these IP lists with the i prep keyword that can be configured to match on:
— Direction
— Category
— Value (reputation score)
Reputation
IP Reputation Config
IP Reputation Rules

IP Reputation Format

102

Chapter 4. Suricata Rules

Suricata User Guide, Release 4.0.0-dev

* http://blog.inliniac.net/2012/11/21/ip-reputation-in-suricata/

4.20.15 Flowbits

* Suricata fully supports the setting and checking of flowbits (including the same flowbit) on the same
packet/stream. Snort does not always allow for this.

¢ In Suricata, flowbits:isset is checked after the fast pattern match but before other content matches. In
Snort, flowbits:isset is checked in the order it appears in the rule, from left to right.

* If there is a chain of flowbits where multiple rules set flowbits and they are dependent on each other, then the
order of the rules or the sid values can make a difference in the rules being evaluated in the proper order and
generating alerts as expected. See bug 1399 - https://redmine.openinfosecfoundation.org/issues/1399.

e Flow Keywords

4.20.16 flowbits:noalert;
A common pattern in existing rules is to use flowbits:noalert; to make sure a rule doesn’t generate an alert if
it matches.

Suricata allows using just noalert; as well. Both have an identical meaning in Suricata.

4.20.17 Negated Content Match Special Case

 For Snort, a negated content match where the starting point for searching is at or beyond the end of the inspection
buffer will never return true.

— For negated matches, you want it to return true if the content is not found.

— This is believed to be a Snort bug rather than an engine difference but it was reported to Sourcefire and
acknowledged many years ago indicating that perhaps it is by design.

— This is not the case for Suricata which behaves as expected.

Example HTTP request:

POST /test.php HTTIP/1.1
Content-Length: 9

user=suri

This rule snippet will never return true in Snort but will in Suricata:

content:!"snort"; offset:10; http_client_body;

4.20.18 File Extraction

* Suricata has the ability to match on files from HTTP and SMTP streams and log them to disk.

* Snort has the “file” preprocessor that can do something similar but it is experimental, development of it has been
stagnant for years, and it is not something that should be used in a production environment.

* Files can be matched on using a number of keywords including:

— filename

4.20. Differences From Snort 103

http://blog.inliniac.net/2012/11/21/ip-reputation-in-suricata/
https://redmine.openinfosecfoundation.org/issues/1399

Suricata User Guide, Release 4.0.0-dev

- fileext
- filemagic
— filesize
— filemd5
- fileshal
— filesha256
— filesize
— See File Keywords for a full list.
The filestore keyword tells Suricata to save the file to disk.

Extracted files are logged to disk with meta data that includes things like timestamp, src/dst IP, protocol, src/dst
port, HTTP URI, HTTP Host, HTTP Referer, filename, file magic, md5sum, size, etc.

There are a number of configuration options and considerations (such as stream reassembly depth and libhtp
body-limit) that should be understood if you want fully utilize file extraction in Suricata.

File Keywords
File Extraction
http://blog.inliniac.net/2011/11/29/file-extraction-in-suricata/

http://blog.inliniac.net/2014/11/11/smtp-file-extraction-in-suricata/

4.20.19 Lua Scripting

* Suricata has the 1ua (or 1uajit) keyword which allows for a rule to reference a Lua script that can access the

packet, payload, HTTP buffers, etc.

* Provides powerful flexibility and capabilities that Snort does not have.

* Lua Scripting

4.20.20 Fast Pattern

Snort’s fast pattern matcher is always case insensitive; Suricata’s is case sensitive unless ‘nocase’ is set on the
content match used by the fast pattern matcher.

Snort will truncate fast pattern matches based on the max-pattern-1len config (default no limit) unless
fast_pattern:only is used in the rule. Suricata does not do any automatic fast pattern truncation cannot
be configured to do so.

Just like in Snort, in Suricata you can specify a substring of the content string to be use as the fast pattern match.
e.g. fast_pattern:5,20;

In Snort, leading NULL bytes (0x00) will be removed from content matches when determining/using the longest
content match unless fast_pattern is explicitly set. Suricata does not truncate anything, including NULL
bytes.

Snort does not allow for all http_* buffers to be used for the fast pattern match (e.g. http_raw_x,
http_method, http_cookie, etc.). Suricata lets you use any ‘http_*’ buffer you want for the fast pat-
tern match, including http_raw_x"' and " http_cookie buffers.

104

Chapter 4. Suricata Rules

http://blog.inliniac.net/2011/11/29/file-extraction-in-suricata/
http://blog.inliniac.net/2014/11/11/smtp-file-extraction-in-suricata/

Suricata User Guide, Release 4.0.0-dev

e Suricata supports the fast_pattern:only syntax but technically it is not really implemented; the only
is silently ignored when encountered in a rule. It is still recommended that you use fast_pattern:only
where appropriate in case this gets implemented in the future and/or if the rule will be used by Snort as well.

e With Snort, unless fast_pattern is explicitly set, content matches in normalized HTTP Inspect buffers
(e.g. http content modifiers such http_uri, http_header, etc.) take precedence over non-HTTP Inspect
content matches, even if they are shorter. Suricata does the same thing and gives a higher ‘priority’ (precedence)
to http_ * buffers (except for http_method, http_stat_code, and http_stat_msqg).

» See Suricata Fast Pattern Determination Explained for full details on how Suricata automatically determines
which content to use as the fast pattern match.

e When in doubt about what is going to be use as the fast pattern match by Suricata, set fast_pattern ex-
plicitly in the rule and/or run Suricata with the ——engine-analysis switch and view the generated file
(rules_fast_pattern.txt).

* Like Snort, the fast pattern match is checked before £1owbits in Suricata.

» Using Hyperscan as the MPM matcher (mpm—algo setting) for Suricata can greatly improve performance,
especially when it comes to fast pattern matching. Hyperscan will also take in to account depth and offset when
doing fast pattern matching, something the other algorithims and Snort do not do.

e Fust Pattern

4.20.21 Don’t Cross The Streams

Suricata will examine network traffic as individual packets and, in the case of TCP, as part of a (reassembled) stream.
However, there are certain rule keywords that only apply to packets only (dsize, flags, tt1) and certain ones that
only apply to streams only (http_) and you can’t mix packet and stream keywords. Rules that use packet keywords
will inspect individual packets only and rules that use stream keywords will inspect streams only. Snort is a little more
forgiving when you mix these — for example, in Snort you can use dsize (a packet keyword) with http_* (stream
keywords) and Snort will allow it although, because of dsize, it will only apply detection to individual packets
(unless PAF is enabled then it will apply it to the PDU).

If dsize isin arule that also looks for a stream-based application layer protocol (e.g. http), Suricata will not match
on the first application layer packet since dsize make Suricata evaluate the packet and protocol detection doesn’t
happen until after the protocol is checked for that packet; subsequent packets in that flow should have the application
protocol set appropriately and will match rules using dsize and a stream-based application layer protocol.

If you need to check sizes on a stream in a rule that uses a stream keyword, or in a rule looking for a stream-based
application layer protocol, consider using the st ream_size keyword and/or i sdataat.

Suricata also supports these protocol values being used in rules and Snort does not:
* tcp-pkt —example:
— alert tcp-pkt
— This tells Suricata to only apply the rule to TCP packets and not the (reassembled) stream.
* tcp-stream - example:
— alert tcp-stream

— This tells Suricata to inspect the (reassembled) TCP stream only.

4.20.22 Alerts

* In Snort, the number of alerts generated for a packet/stream can be limited by the event__queue configuration.

4.20. Differences From Snort 105

Suricata User Guide, Release 4.0.0-dev

e Suricata has an internal hard-coded limit of 15 alerts per packet/stream (and this cannot be configured); all rules
that match on the traffic being analyzed will fire up to that limit.

» Sometimes Suricata will generate what appears to be two alerts for the same TCP packet. This happens when

Suricata evaluates the packet by itself and as part of a (reassembled) stream.

4.20.23 Buffer Reference Chart

Buffer Snort 2.9.x Suricata PCRE Can be used | Suricata Fast Pattern
Support? Support? flag | as Fast Priority (lower number is
Pattern? higher priority)
content YES YES <none> YES 3
(no
modifier)
http_methad YES YES M Suricata only 3
http_stat_cod€ES YES S Suricata only 3
http_stat_msYES YES Y Suricata only 3
uricon- YES but YES but U YES 2
tent deprecated, use deprecated, use
http_uri instead http_uri instead
http_uri YES YES U YES 2
http_raw_uriYES YES 1 Suricata only 2
http_header YES YES H YES 2
http_raw_headES YES D Suricata only 2
http_cooki¢ YES YES C Suricata only 2
http_raw_codkES NO (use K NO n/a
http_raw_header
instead)
http_host | NO YES W Suricata only 2
http_raw_hod¥O YES Z Suricata only 2
http_client | b¥&S YES P YES 2
http_server| BdQy YES Q Suricata only 2
http_user_agdHD YES v Suricata only 2
dns_query | NO YES n/a* | Suricata only 2
tls_sni NO YES n/a* Suricata only 2
tls_cert_issud¥O YES n/a* Suricata only 2
tls_cert_subj®d0 YES n/a* Suricata only 2
file_data YES YES n/a* YES 2

* Sticky buffer

106

Chapter 4. Suricata Rules

CHAPTER B

Rule Management

5.1 Rule Management with Oinkmaster

It is possible to download and install rules manually, but there is a much easier and quicker way to do so. There
are special programs which you can use for downloading and installing rules. There is for example Pulled Pork and
Oinkmaster. In this documentation the use of Oinkmaster will be described.

To install Oinkmaster, enter:

sudo apt-get install oinkmaster

There are several rulesets. There is for example Emerging Threats (ET) Emerging Threats Pro and VRT. In this
example we are using Emerging Threats.

Oinkmaster has to know where the rules an be found. These rules can be found at:

’https://rules.emergingthreats.net/open/suricatafB.2/emerging.rules.tar.gz

open oinkmaster.conf to add this link by entering:

sudo nano /etc/oinkmaster.conf

Place a # in front of the url that is already there and add the new url like this:

107

https://github.com/shirkdog/pulledpork
http://oinkmaster.sourceforge.net/

Suricata User Guide, Release 4.0.0-dev

File Edit View Search Terminal Help
GNU mano 2.2.4 File: /etc/oinkmaster.conf

is is the default Debian configuration for oinkmaste
{ ; ise this file wi

more informati -
r options ple
for the original

NOTE: this might need to be changed based on the Snort
& vou are runnina. This confiouration Tiles uses Snort 2
Furl 3 www . snort.org/dl/rules/snortrules-s
url

& For snmort 2.8

& url = htt ww. snort.org/dl/rules/snortrules-snapshot-2 08.tar.gz

To use CVS snapshots

url = http://www.snort.org/dl/rules/snortrules-snapshot-CURRENT. tar.gz

(Close oinkmaster.conf by pressing ctrl x, followed by y and enter.)

The next step is to create a directory for the new rules. Enter:

sudo mkdir /etc/suricata/rules

Next enter:

cd /etc
sudo oinkmaster -C /etc/oinkmaster.conf -o /etc/suricata/rules

In the new rules directory a classification.config and a reference.config can be found. The directories of both have to
be added in the suricata.yaml file. Do so by entering:

sudo nano /etc/suricata/suricata.yaml

And add the new file locations instead of the file locations already present, like this:

108 Chapter 5. Rule Management

Suricata User Guide, Release 4.0.0-dev

¢+ anne-fleur@beo: ~

File Edit ; Search Terminal Help
File: jetc/suricata/s/suricata.yaml

e.rules
2p.rules
olicy.rules
ing-scan. rules
irus.rules

nts.rules

rul ac
: fsuric frules/ sification.config
ence-config g sference. config

olds variables that would be used by the engime.

To see if everything works as pleased, run Suricata:

suricata -c¢ /etc/suricata/suricata.yaml -i wlanO (or ethO)

You will notice there are several rule-files Suricata tries to load, but are not available. It is possible to disable those
rule-sets in suricata.yaml by deleting them or by putting a # in front of them. To stop Suricata from running, press ctrl
c.

Emerging Threats contains more rules than loaded in Suricata. To see which rules are available in your rules directory,
enter:

’ls /etc/suricata/rules/*.rules

Find those that are not yet present in suricata.yaml and add them in yaml if desired.

You can do so by entering :

sudo nano /etc/suricata/suricata.yaml

If you disable a rule in your rule file by putting a # in front of it, it will be enabled again the next time you run
Oinkmaster. You can disable it through Oinkmaster instead, by entering the following:

’cd /etc/suricata/rules

and find the sid of the rule(s) you want to disable.

Subsequently enter:

’sudo nano /etc/oinkmaster.conf

and go all the way to the end of the file. Type there:

’disablesid 2010495

Instead of 2010495, type the sid of the rule you would like to disable. It is also possible to disable multiple rules, by
entering their sids separated by a comma.

5.1. Rule Management with Oinkmaster 109

Suricata User Guide, Release 4.0.0-dev

If you run Oinkmaster again, you can see the amount of rules you have disabled. You can also enable rules that are
disabled by default. Do so by entering:

’ls /etc/suricata/rules

In this directory you can see several rule-sets Enter for example:

sudo nano /etc/suricata/rules/emerging-malware.rules

In this file you can see which rules are enabled en which are not. You can not enable them for the long-term just by
simply removing the #. Because each time you will run Oinkmaster, the rule will be disabled again. Instead, look up
the sid of the rule you want to enable. Place the sid in the correct place of oinkmaster.config:

’sudo nano /etc/oinkmaster.conf

do so by typing:

’enablesid: 2010495

Instead of 2010495, type the sid of the rule you would like to to enable. It is also possible to enable multiple rules, by
entering their sids separated by a comma.

In oinkmaster.conf you can modify rules. For example, if you use Suricata as inline/IPS and you want to modify a rule
that sends an alert when it matches and you would like the rule to drop the packet instead, you can do so by entering
the following:

’sudo nano oinkmaster.conf

At the part where you can modify rules, type:

’modifysid 2010495 “alert” | “drop”

The sid 2010495 is an example. Type the sid of the rule you desire to change, instead.

Rerun Oinkmaster to notice the change.

5.1.1 Updating your rules

If you have already downloaded a ruleset (in the way described in this file), and you would like to update the rules,
enter:

sudo oinkmaster -C /etc/oinkmaster.conf -o /etc/suricata/rules

It is recommended to update your rules frequently. Emerging Threats is modified daily, VRT is updated weekly or
multiple times a week.

5.2 Adding Your Own Rules

If you would like to create a rule yourself and use it with Suricata, this guide might be helpful.

Start creating a file for your rule. Type for example the following in your console:

sudo nano local.rules

110 Chapter 5. Rule Management

Suricata User Guide, Release 4.0.0-dev

Write your rule, see Rules Introduction and save it.

Open yaml

sudo nano /etc/suricata/suricata.yaml

and make sure your local.rules file is added to the list of rules.

Now, run Suricata and see if your rule is being loaded.

’suricata -c /etc/suricata/suricata.yaml -i wlanO

If your rule failed to load, check if you have made a mistake anywhere in the rule. Mind the details; look for mistakes
in special characters, spaces, capital characters etc.

Next, check if your log-files are enabled in suricata.yaml.
If you had to correct your rule and/or modify yaml, you have to restart Suricata.
If you see your rule is successfully loaded, you can double check your rule by doing something that should trigger it.

Enter:

tail -f /var/log/suricata/fast.log

If you would make a rule like this:

alert http any any —> any any (msg:"Do not read gossip during work";
content:"Scarlett"; nocase; classtype:policy-violation; sid:1; rev:1;)

Your alert should look like this:

09/15/2011-16:50:27.725288 [#x] [1:1:1] Do not read gossip during work [*x*]
[Classification: Potential Corporate Privacy Violation] [Priority: 1] {TCP} 192.168.0.
—32:55604 —-> 68.67.185.210:80

5.3 Rule Reloads

Suricata can be told to reloads it’s rules without restarting.

This works by sending Suricata a signal or by using the unix socket. When Suricata is told to reload the rules these are
the basic steps it takes:

* Load new config

* Load new rules

 Construct new detection engine

* Swap old and new detection engines
¢ Make sure all threads are updated

* Free old detection engine

Suricata will continue to process packets normally during this process. Keep in mind though, that the system should
have enough memory for both detection engines.

Signal:

5.3. Rule Reloads 111

Suricata User Guide, Release 4.0.0-dev

‘kill ~-USR2 $(pidof suricata)

Unix socket:

suricatasc -c reload-rules

112 Chapter 5. Rule Management

CHAPTER O

Making sense out of Alerts

When alert happens it’s important to figure out what it means. Is it serious? Relevant? A false positive?
To find out more about the rule that fired, it’s always a good idea to look at the actual rule.

The first thing to look at in a rule is the description that follows the “msg” keyword. Lets consider an example:

msg:"ET SCAN sipscan probe";

The “ET” indicates the rule came from the Emerging Threats project. “SCAN” indicates the purpose of the rule is to
match on some form of scanning. Following that a more or less detailed description is given.

Most rules contain some pointers to more information in the form of the “reference” keyword.

Consider the following example rule:

alert tcp SHOME_NET any —> SEXTERNAL_NET $HTTP_PORTS \
(msg:"ET CURRENT_EVENTS Adobe 0Oday Shovelware"; \
flow:established, to_server; content:"GET "; nocase; depth:4; \
content:!"|0d Oa|Referer\:"; nocase; \
uricontent:"/ppp/listdir.php?dir="; \
pcre:"/\/[a-z]{2}\/[a-z]{4}01\/ppp\/listdir\.php\2?2dir=/U"; \
classtype:trojan—activity; \
reference:url,isc.sans.org/diary.html?storyid=7747; \
reference:url,doc.emergingthreats.net/2010496; \
reference:url,www.emergingthreats.net/cgi-bin/cvsweb.cgi/sigs/CURRENT_EVENTS/
—CURRENT_Adobe; \
s$1d:2010496; rev:2;)

In this rule the reference keyword indicates 3 url’s to visit for more information:

isc.sans.org/diary.html?storyid=7747
doc.emergingthreats.net/2010496
www.emergingthreats.net/cgi-bin/cvsweb.cgi/sigs/CURRENT_EVENTS/CURRENT_Adobe

Some rules contain a reference like: “reference:cve,2009-3958;” should allow you to find info about the specific CVE
using your favourite search engine.

113

Suricata User Guide, Release 4.0.0-dev

It’s not always straight forward and sometimes not all of that information is available publicly. Usually asking about
it on the signature support lists helps a lot then.

For the Emerging Threats list this is: http://lists.emergingthreats.net/mailman/listinfo/emerging-sigs
For the VRT ruleset: https:/lists.sourceforge.net/lists/listinfo/snort-sigs

In many cases, looking at just the alert and the packet that triggered it won’t be enough to be conclusive. When running
an IDS engine like Suricata, it’s always recommended to combine it with full packet capturing. Using tools like Sguil
or Snorby, the full TCP session or UDP flow can be inspected.

For example, if a rule fired that indicates your web application is attacked, looking at the full TCP session might reveal
that the web application replied with 404 not found. This will usually mean the attack failed. Usually, not always.

Obviously there is a lot more to Incidence Response, but this should get you started.

114 Chapter 6. Making sense out of Alerts

http://lists.emergingthreats.net/mailman/listinfo/emerging-sigs
https://lists.sourceforge.net/lists/listinfo/snort-sigs

CHAPTER /

Performance

7.1 Runmodes

Suricata consists of several ‘building blocks’ called threads, thread-modules and queues. A thread is like a process
that runs on a computer. Suricata is multi-threaded, so multiple threads are active at once. A thread-module is a part
of a functionality. One module is for example for decoding a packet, another is the detect-module and another one the
output-module. A packet can be processed by more than one thread. The packet will be passed on to the next thread
through a queue. Packets will be processed by one thread at a time, but there can be multiple packets being processed
at a time by the engine. (see Max-pending-packets) A thread can have one or more thread-modules. If they have more
modules, they can only be active on a a time. The way threads, modules and queues are arranged together is called the
Runmode.

7.1.1 Different runmodes

You can choose a runmode out of several predefined runmodes. The command line option —list-runmodes shows all
available runmodes. All runmodes have a name: auto, single, autofp. The heaviest task is the detection; a packet will
be checked against thousands of signatures.

Example of the default runmode:

115

Suricata User Guide, Release 4.0.0-dev

=l
SBEE =
B

In the pfring mode, every flow follows its own fixed route in the runmode.

For more information about the command line options concerning the runmode, see Command Line Options.

7.2 Packet Capture

7.2.1 Load balancing

To get the best performance, Suricata will need to run in ‘workers’ mode. This effectively means that there are multiple
threads, each running a full packet pipeline and each receiving packets from the capture method. This means that we
rely on the capture method to distribute the packets over the various threads. One critical aspect of this is that Suricata
needs to get both sides of a flow in the same thread, in the correct order.

116 Chapter 7. Performance

Suricata User Guide, Release 4.0.0-dev

The AF_PACKET and PF_RING capture methods both have options to select the ‘cluster-type’. These default to
‘cluster_flow’ which instructs the capture method to hash by flow (5 tuple). This hash is symmetric. Netmap does
not have a cluster_flow mode built-in. It can be added separately by using the “‘Ib’ tool””:https://github.com/luigirizzo/
netmap/tree/master/apps/lb

> WARNING Recent AF_PACKET changes have “broken”:https://redmine.openinfosecfoundation.org/issues/1777
this symmetry. Work is under way to “address this:https://redmine.openinfosecfoundation.org/issues/1777#note-7,
but for now stay on kernel <=4.2 or update to 4.4.16+, 4.6.5+ or 4.7+.

On multi-queue NICs, which is almost any modern NIC, RSS settings need to be considered.

7.2.2 RSS

Receive Side Scaling is a technique used by network cards to distribute incoming traffic over various queues on the
NIC. This is meant to improve performance but it is important to realize that it was designed for normal traffic, not for
the IDS packet capture scenario. RSS using a hash algorithm to distribute the incoming traffic over the various queues.
This hash is normally not symmetrical. This means that when receiving both sides of a flow, each side may end up in
a different queue. Sadly, when deploying Suricata, this is the common scenario when using span ports or taps.

The problem here is that by having both sides of the traffic in different queues, the order of processing of packets
becomes unpredictable. Timing differences on the NIC, the driver, the kernel and in Suricata will lead to a high chance
of packets coming in at a different order than on the wire. This is specifically about a mismatch between the two traffic
directions. For example, Suricata tracks the TCP 3-way handshake. Due to this timing issue, the SYN/ACK may only
be received by Suricata long after the client to server side has already started sending data. Suricata would see this
traffic as invalid.

None of the supported capture methods like AF_PACKET, PF_RING or NETMAP can fix this problem for us. It
would require buffering and packet reordering which is expensive.

To see how many queues are configured:

$ ethtool -1 ens2fl

Channel parameters for ens2fl:
Pre-set maximums:

RX:
TX:
Other:
Combined: 4

Current hardware settings:
RX:

TX:
Other:
Combined:

o P O O

@ = O O

Some NIC’s allow you to set it into a symmetric mode. The Intel X(L)710 card can do this in theory, but the drivers
aren’t capable of enabling this yet (work is underway to try to address this). Another way to address is by setting a
special “Random Secret Key” that will make the RSS symmetrical. See http://www.ndsl.kaist.edu/~kyoungsoo/papers/
TR-symRSS.pdf (PDF).

In most scenario’s however, the optimal solution is to reduce the number of RSS queues to 1:

Example:

Intel X710 with i40e driver:
ethtool -L $DEV combined 1

Some drivers do not support setting the number of queues through ethtool. In some cases there is a module load time
option. Read the driver docs for the specifics.

7.2. Packet Capture 117

https://github.com/luigirizzo/netmap/tree/master/apps/lb
https://github.com/luigirizzo/netmap/tree/master/apps/lb
https://redmine.openinfosecfoundation.org/issues/1777
https://redmine.openinfosecfoundation.org/issues/1777#note-7
http://www.ndsl.kaist.edu/~kyoungsoo/papers/TR-symRSS.pdf
http://www.ndsl.kaist.edu/~kyoungsoo/papers/TR-symRSS.pdf

Suricata User Guide, Release 4.0.0-dev

7.2.3 Offloading
Network cards, drivers and the kernel itself have various techniques to speed up packet handling. Generally these will
all have to be disabled.

LRO/GRO lead to merging various smaller packets into big ‘super packets’. These will need to be disabled as they
break the dsize keyword as well as TCP state tracking.

Checksum offloading can be left enabled on AF_PACKET and PF_RING, but needs to be disabled on PCAP, NETMAP
and others.

7.2.4 Recommendations

Read your drivers documentation! E.g. for i40e the ethtool change of RSS queues may lead to kernel panics if done
wrong.

Generic: set RSS queues to 1 or make sure RSS hashing is symmetric. Disable NIC offloading.

AF_PACKET: 1 RSS queue and stay on kernel <=4.2 or make sure you have >=4.4.16, >=4.6.5 or >=4.7. Exception:
if RSS is symmetric cluster-type ‘cluster_qm’ can be used to bind Suricata to the RSS queues. Disable NIC offloading
except the rx/tx csum.

PF_RING: 1 RSS queue and use cluster-type ‘cluster_flow’. Disable NIC offloading except the rx/tx csum.

NETMAP: 1 RSS queue. There is no flow based load balancing built-in, but the ‘b’ tool can be helpful. Another
option is to use the ‘autofp’ runmode. Exception: if RSS is symmetric, load balancing is based on the RSS hash and
multiple RSS queues can be used. Disable all NIC offloading.

7.3 Tuning Considerations

Settings to check for optimal performance.

7.3.1 max-pending-packets: <number>

This setting controls the number simultaneous packets that the engine can handle. Setting this higher generally keeps
the thread